Skip to main content

Advertisement

Log in

Microwave Drying Effect on Pyrolysis Characteristics and Kinetics of Microalgae

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Microalgae are one of the most potential biomass energy sources. An efficient drying method is important to development and utilization of microalgae. Microwave drying is receiving increasing attention because it is a rapid, high-efficiency, and economical method compared to conventional drying. Pyrolysis characteristics of microalgae (C. vulgaris) after conventional drying (drying at 105 °C for 20 h) and microwave drying (the microwave drying time of 20, 30, and 40 min) were investigated. The pyrolysis experiment of microalgae was carried out at the heating rates of 10, 20, and 40 °C·min−1 in a thermogravimetric analyzer (TGA). And the bio-char after pyrolysis of C. vulgaris under different heating powers (conventional power of 2500 W and microwave power of 600, 1000, 1500, and 2250 W) were analyzed. Results show that comprehensive pyrolysis characteristic index (S) of C. vulgaris after microwave drying was higher than conventional drying; however, energy consumption and activation energy (E) after microwave drying were lower. For microwave drying, as microwave drying time increases, ignition temperature (Ti), final temperature detected as mass stabilization (Tf), reaction rate at the second peaks (Rp2), residual mass (Mr), and energy consumption increased, while average reaction rate (Rv) decreased. As the heating rate (β) increased, the Ti, Tf, Rp2, Rv, and S of C. vulgaris increased, while Mr decreased, and E firstly decreased and then increased. And except for microwave power of 600 W, as microwave power increased, the volatile content and the fixed carbon content of C. vulgaris bio-char decreased, and the ash was increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bilandzija N, Voca N, Jelcic B, Jurisic V, Matin A, Grubor M, Kricka T (2018) Evaluation of Croatian agricultural solid biomass energy potential. Renew Sust Energ Rev 93:225–230

    Article  Google Scholar 

  2. Mao G, Huang N, Chen L, Wang H (2018) Research on biomass energy and environment from the past to the future: a bibliometric analysis. Sci Total Environ 635:1081–1090

    Article  CAS  PubMed  Google Scholar 

  3. Kadir WNA, Lam MK, Uemura Y, Lim JW, Lee KT (2018) Harvesting and pre-treatment of microalgae cultivated in wastewater for biodiesel production: a review. Energy Convers Manag 171:1416–1429

    Article  CAS  Google Scholar 

  4. Rizwan M, Mujtaba G, Memon SA, Lee K, Rashid N (2018) Exploring the potential of microalgae for new biotechnology applications and beyond: a review. Renew Sust Energ Rev 92:394–404

    Article  Google Scholar 

  5. Miranda MT, Sepúlveda FJ, Arranz JI, Montero I, Rojas CV (2018) Physical-energy characterization of microalgae Scenedesmus and experimental pellets. Fuel 226:121–126

    Article  CAS  Google Scholar 

  6. Xu K, Li Y, Zou X, Wen H, Shen Z, Ren X (2018) Investigating microalgae cell-microsphere interactions during microalgae harvesting by ballasted dissolved air flotation through XDLVO theory. Biochem Eng J 137:294–304

    Article  CAS  Google Scholar 

  7. Singh G, Patidar SK (2018) Microalgae harvesting techniques: a review. J Environ Manag 217:499–508

    Article  Google Scholar 

  8. Santos NO, Oliveira SM, Alves LC, Cammarota MC (2014) Methane production from marine microalgae Isochrysis galbana. Bioresour Technol 157:60–67

    Article  CAS  PubMed  Google Scholar 

  9. Chen J, Li J, Dong W, Zhang X, Tyagi RD, Drogui P, Surampalli RY (2018) The potential of microalgae in biodiesel production. Renew Sust Energ Rev 90:336–346

    Article  Google Scholar 

  10. Sukiran MA, Abnisa F, Wan Daud WMA, Abu Bakar N, Loh SK (2017) A review of torrefaction of oil palm solid wastes for biofuel production. Energy Convers Manag 149:101–120

    Article  CAS  Google Scholar 

  11. Cao X, Zhang M, Fang Z, Mujumdar AS, Jiang H, Qian H, Ai H (2017) Drying kinetics and product quality of green soybean under different microwave drying methods. Dry Technol 35:240–248

    Article  CAS  Google Scholar 

  12. Song Z, Yao L, Jing C, Zhao X, Wang W, Ma C (2017) Drying behavior of lignite under microwave heating. Dry Technol 35:433–443

    Article  CAS  Google Scholar 

  13. Lv W, Fan G, Lv X, Lv X, Hu M, Zhang S, Qiu G, Bai C (2018) Drying kinetics of Philippine nickel laterite by microwave heating. Dry Technol 36:849–858

    Article  CAS  Google Scholar 

  14. Wang X, Chen H, Luo K, Shao J, Yang H (2008) The influence of microwave drying on biomass pyrolysis. Energy Fuel 22:67–74

    Article  CAS  Google Scholar 

  15. Fennell LP, Boldor D (2014) Continuous microwave drying of sweet sorghum bagasse biomass. Biomass Bioenergy 70:542–552

    Article  CAS  Google Scholar 

  16. Ho S, Zhang C, Chen W, Shen Y, Chang J (2018) Characterization of biomass waste torrefaction under conventional and microwave heating. Bioresour Technol 264:7–16

    Article  CAS  PubMed  Google Scholar 

  17. Iraola-Arregui I, Van Der Gryp P, Görgens JF (2018) A review on the demineralisation of pre- and post-pyrolysis biomass and tyre wastes. Waste Manag 79:667–688

    Article  CAS  PubMed  Google Scholar 

  18. Dhyani V, Bhaskar T (2018) A comprehensive review on the pyrolysis of lignocellulosic biomass. Renew Energy 129:695–716

    Article  CAS  Google Scholar 

  19. Mallick D, Poddar MK, Mahanta P, Moholkar VS (2018) Discernment of synergism in pyrolysis of biomass blends using thermogravimetric analysis. Bioresour Technol 261:294–305

    Article  CAS  PubMed  Google Scholar 

  20. Al Arni S (2018) Comparison of slow and fast pyrolysis for converting biomass into fuel. Renew Energy 124:197–201

    Article  CAS  Google Scholar 

  21. Zhao B, Wang X, Yang X (2015) Co-pyrolysis characteristics of microalgae Isochrysis and Chlorella: kinetics, biocrude yield and interaction. Bioresour Technol 198:332–339

    Article  CAS  PubMed  Google Scholar 

  22. Hu Z, Ma X, Li L (2016) The synergistic effect of co-pyrolysis of oil shale and microalgae to produce syngas. J Energy Inst 89:447–455

    Article  CAS  Google Scholar 

  23. Azizi K, Keshavarz Moraveji M, Abedini Najafabadi H (2017) Characteristics and kinetics study of simultaneous pyrolysis of microalgae Chlorella vulgaris, wood and polypropylene through TGA. Bioresour Technol 243:481–491

    Article  CAS  PubMed  Google Scholar 

  24. Chen C, Ma X, He Y (2012) Co-pyrolysis characteristics of microalgae Chlorella vulgaris and coal through TGA. Bioresour Technol 117:264–273

    Article  CAS  PubMed  Google Scholar 

  25. Wu Z, Yang W, Yang B (2018) Thermal characteristics and surface morphology of char during co-pyrolysis of low-rank coal blended with microalgal biomass: effects of Nannochloropsis and Chlorella. Bioresour Technol 249:501–509

    Article  CAS  PubMed  Google Scholar 

  26. Hu Z, Ma X, Chen C (2012) A study on experimental characteristic of microwave-assisted pyrolysis of microalgae. Bioresour Technol 107:487–493

    Article  CAS  PubMed  Google Scholar 

  27. Hu Z, Jiang E, Ma X (2018) Microwave pretreatment on microalgae: effect on thermo-gravimetric analysis and kinetic characteristics in chemical looping gasification. Energy Convers Manag 160:375–383

    Article  CAS  Google Scholar 

  28. Liu H, E J, Ma X, Xie C (2016) Influence of microwave drying on the combustion characteristics of food waste. Dry Technol 34:1397–1405

    Article  Google Scholar 

  29. Gao Z, Zheng M, Zhang D, Zhang W (2016) Low temperature pyrolysis properties and kinetics of non-coking coal in Chinese western coals. J Energy Inst 89:544–559

    Article  CAS  Google Scholar 

  30. Agrawal A, Chakraborty S (2013) A kinetic study of pyrolysis and combustion of microalgae Chlorella vulgaris using thermo-gravimetric analysis. Bioresour Technol 128:72–80

    Article  CAS  PubMed  Google Scholar 

  31. Wu K, Liu J, Wu Y, Chen Y, Li Q, Xiao X, Yang M (2014) Pyrolysis characteristics and kinetics of aquatic biomass using thermogravimetric analyzer. Bioresour Technol 163:18–25

    Article  CAS  PubMed  Google Scholar 

  32. Ceylan S, Kazan D (2015) Pyrolysis kinetics and thermal characteristics of microalgae Nannochloropsis oculata and Tetraselmis sp. Bioresour Technol 187:1–5

    Article  CAS  PubMed  Google Scholar 

  33. Sanchez-Silva L, López-González D, Garcia-Minguillan AM, Valverde JL (2013) Pyrolysis, combustion and gasification characteristics of Nannochloropsis gaditana microalgae. Bioresour Technol 130:321–331

    Article  CAS  PubMed  Google Scholar 

  34. Wang S, Jiang XM, Wang N, Yu LJ, Li Z, He PM (2007) Research on pyrolysis characteristics of seaweed. Energy Fuel 21:3723–3729

    Article  CAS  Google Scholar 

  35. Vo TK, Ly HV, Lee OK, Lee EY, Kim CH, Seo J, Kim J, Kim S (2017) Pyrolysis characteristics and kinetics of microalgal Aurantiochytrium sp. KRS101. Energy 118:369–376

    Article  CAS  Google Scholar 

  36. Kim S, Ly HV, Kim J, Lee EY, Woo HC (2015) Pyrolysis of microalgae residual biomass derived from Dunaliella tertiolecta after lipid extraction and carbohydrate saccharification. Chem Eng J 263:194–199

    Article  CAS  Google Scholar 

  37. Li D, Chen L, Zhang X, Ye N, Xing F (2011) Pyrolytic characteristics and kinetic studies of three kinds of red algae. Biomass Bioenergy 35:1765–1772

    Article  CAS  Google Scholar 

  38. Jeguirim M, Trouvé G (2009) Pyrolysis characteristics and kinetics of Arundo donax using thermogravimetric analysis. Bioresour Technol 100:4026–4031

    Article  CAS  PubMed  Google Scholar 

  39. Chahbani A, Fakhfakh N, Balti MA, Mabrouk M, El-Hatmi H, Zouari N, Kechaou N (2018) Microwave drying effects on drying kinetics, bioactive compounds and antioxidant activity of green peas (Pisum sativum L.). Food Biosci 25:32–38

    Article  CAS  Google Scholar 

  40. Li L, Jiang X, Bian Z, Wang J, Wang F, Song Z, Zhao X, Ma C (2018) Microwave drying performance of lignite with the assistance of biomass-derived char. Dry Technol 1–13

  41. Chaiwong K, Kiatsiriroat T, Vorayos N, Thararax C (2013) Study of bio-oil and bio-char production from algae by slow pyrolysis. Biomass Bioenergy 56:600–606

    Article  CAS  Google Scholar 

  42. Bird MI, Wurster CM, de Paula Silva PH, Bass AM, de Nys R (2011) Algal biochar-production and properties. Bioresour Technol 102:1886–1891

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Guangxi Natural Science Foundation (2014GXNSFBA118252), the Guangxi Scientific Research and Technology Development Project (Gui Kegong 1598008-17), and the University Scientific Research Key Project of Guangxi Zhuang Autonomous Region Education Department (ZD2014008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunxiang Chen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Yang, S. & Bu, X. Microwave Drying Effect on Pyrolysis Characteristics and Kinetics of Microalgae. Bioenerg. Res. 12, 400–408 (2019). https://doi.org/10.1007/s12155-019-09970-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-019-09970-z

Keywords

Navigation