Skip to main content

Advertisement

Log in

A comparison of five partial volume correction methods for Tau and Amyloid PET imaging with [18F]THK5351 and [11C]PIB

  • Short Communication
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Purpose

To suppress partial volume effect (PVE) in brain PET, there have been many algorithms proposed. However, each methodology has different property due to its assumption and algorithms. Our aim of this study was to investigate the difference among partial volume correction (PVC) method for tau and amyloid PET study.

Methods

We investigated two of the most commonly used PVC methods, Müller-Gärtner (MG) and geometric transfer matrix (GTM) and also other three methods for clinical tau and amyloid PET imaging. One healthy control (HC) and one Alzheimer’s disease (AD) PET studies of both [18F]THK5351 and [11C]PIB were performed using a Eminence STARGATE scanner (Shimadzu Inc., Kyoto, Japan). All PET images were corrected for PVE by MG, GTM, Labbé (LABBE), Regional voxel-based (RBV), and Iterative Yang (IY) methods, with segmented or parcellated anatomical information processed by FreeSurfer, derived from individual MR images. PVC results of 5 algorithms were compared with the uncorrected data.

Results

In regions of high uptake of [18F]THK5351 and [11C]PIB, different PVCs demonstrated different SUVRs. The degree of difference between PVE uncorrected and corrected depends on not only PVC algorithm but also type of tracer and subject condition.

Conclusion

Presented PVC methods are straight-forward to implement but the corrected images require careful interpretation as different methods result in different levels of recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Okamura N, Harada R, Furukawa K, Furumoto S, Tago T, Yanai K, et al. Advances in the development of tau PET radiotracers and their clinical applications. Ageing Res Rev. 2016;30:107–13.

    Article  CAS  PubMed  Google Scholar 

  2. Soret M, Bacharach SL, Buvat I. Partial-volume effect in PET tumor imaging. J Nucl Med. 2007;48(6):932–45.

    Article  PubMed  Google Scholar 

  3. Erlandsson K, Buvat I, Pretorius PH, Thomas BA, Hutton BF. A review of partial volume correction techniques for emission tomography and their applications in neurology, cardiology and oncology. Phys Med Biol. 2012;57(21):R119–59.

    Article  PubMed  Google Scholar 

  4. Erlandsson K, Dickson J, Arridge S, Atkinson D, Ourselin S, Hutton BF. MR imaging-guided partial volume correction of PET data in PET/MR imaging. PET Clin. 2016;11(2):161–77.

    Article  PubMed  Google Scholar 

  5. Muller-Gartner HW, Links JM, Prince JL, Bryan RN, McVeigh E, Leal JP, et al. Measurement of radiotracer concentration in brain gray matter using positron emission tomography: MRI-based correction for partial volume effects. J Cereb Blood Flow Metab. 1992;12(4):571–83.

    Article  CAS  PubMed  Google Scholar 

  6. Rousset OG, Ma Y, Evans AC. Correction for partial volume effects in PET: principle and validation. J Nucl Med. 1998;39(5):904–11.

    CAS  PubMed  Google Scholar 

  7. Adamczuk K, De Weer AS, Nelissen N, Chen K, Sleegers K, Bettens K, et al. Polymorphism of brain derived neurotrophic factor influences beta amyloid load in cognitively intact apolipoprotein E epsilon4 carriers. NeuroImage Clin. 2013;2:512–20.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Brendel M, Hogenauer M, Delker A, Sauerbeck J, Bartenstein P, Seibyl J, et al. Improved longitudinal [(18)F]-AV45 amyloid PET by white matter reference and VOI-based partial volume effect correction. NeuroImage. 2015;108:450–9.

    Article  PubMed  Google Scholar 

  9. Forster S, Yousefi BH, Wester HJ, Klupp E, Rominger A, Forstl H, et al. Quantitative longitudinal interrelationships between brain metabolism and amyloid deposition during a 2-year follow-up in patients with early Alzheimer’s disease. Eur J Nucl Med Mol Imag. 2012;39(12):1927–36.

    Article  Google Scholar 

  10. Ito H, Shinotoh H, Shimada H, Miyoshi M, Yanai K, Okamura N, et al. Imaging of amyloid deposition in human brain using positron emission tomography and [18F]FACT: comparison with [11C]PIB. Eur J Nucl Med Mol Imag. 2014;41(4):745–54.

    Article  CAS  Google Scholar 

  11. Matsubara K, Ibaraki M, Shimada H, Ikoma Y, Suhara T, Kinoshita T, et al. Impact of spillover from white matter by partial volume effect on quantification of amyloid deposition with [11C]PiB PET. NeuroImage. 2016;143:316–24.

    Article  PubMed  Google Scholar 

  12. Mori T, Shimada H, Shinotoh H, Hirano S, Eguchi Y, Yamada M, et al. Apathy correlates with prefrontal amyloid beta deposition in Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 2014;85(4):449–55.

    Article  PubMed  Google Scholar 

  13. Rullmann M, Dukart J, Hoffmann KT, Luthardt J, Tiepolt S, Patt M, et al. Partial-volume effect correction improves quantitative analysis of 18F-florbetaben beta-amyloid PET scans. J Nucl Med. 2016;57(2):198–203.

    Article  CAS  PubMed  Google Scholar 

  14. Scholl M, Lockhart SN, Schonhaut DR, O’Neil JP, Janabi M, Ossenkoppele R, et al. PET imaging of tau deposition in the aging human brain. Neuron. 2016;89(5):971–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Su Y, Blazey TM, Snyder AZ, Raichle ME, Marcus DS, Ances BM, et al. Partial volume correction in quantitative amyloid imaging. NeuroImage. 2015;107:55–64.

    Article  CAS  PubMed  Google Scholar 

  16. Villemagne VL, Furumoto S, Fodero-Tavoletti MT, Mulligan RS, Hodges J, Harada R, et al. In vivo evaluation of a novel tau imaging tracer for Alzheimer’s disease. Eur J Nucl Med Mol Imag. 2014;41(5):816–26.

    Article  CAS  Google Scholar 

  17. Greve DN, Salat DH, Bowen SL, Izquierdo-Garcia D, Schultz AP, Catana C, et al. Different partial volume correction methods lead to different conclusions: an F-FDG-PET study of aging. NeuroImage. 2016;132:334–43.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Tanaka E, Kudo H. Optimal relaxation parameters of DRAMA (dynamic RAMLA) aiming at one-pass image reconstruction for 3D-PET. Phys Med Biol. 2010;55(10):2917–39.

    Article  PubMed  Google Scholar 

  19. Ibaraki M, Matsubara K, Sato K, Mizuta T, Kinoshita T. Validation of a simplified scatter correction method for 3D brain PET with 15O. Ann Nucl Med. 2016;30(10):690–8.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Rousset OG, Collins DL, Rahmim A, Wong DF. Design and implementation of an automated partial volume correction in PET: application to dopamine receptor quantification in the normal human striatum. J Nucl Med. 2008;49(7):1097–106.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Labbe C, Koepp MJ, Ashburner J, Spinks T, Richardson M, Duncan JS, et al. Absolute PET quantification with correction for partial volume effects within cerebral structures. Carson RE, Daube-Witherspoon ME, Herscovitch P (Eds), London: Academic Press;1998.

  22. Thomas BA, Erlandsson K, Modat M, Thurfjell L, Vandenberghe R, Ourselin S, et al. The importance of appropriate partial volume correction for PET quantification in Alzheimer’s disease. Eur J Nucl Med Mol Imag. 2011;38(6):1104–19.

    Article  Google Scholar 

  23. Yang C, Huanf C, Mega M, Lin KP, Toga AW, Small GW, et al. Investigation of Partial Volume Correction Methods for Brain FDG PET Studies. IEEE Trans Nucl Sci. 1996;43(6):3322–7.

    Article  Google Scholar 

  24. Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis. I. Segmentation and surface reconstruction. NeuroImage. 1999;9(2):179–94.

    Article  CAS  PubMed  Google Scholar 

  25. Fischl B, Dale AM. Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci USA. 2000;97(20):11050–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fischl B, Sereno MI, Dale AM. Cortical surface-based analysis. II: inflation, flattening, and a surface-based coordinate system. NeuroImage. 1999;9(2):195–207.

    Article  CAS  PubMed  Google Scholar 

  27. Segonne F, Pacheco J, Fischl B. Geometrically accurate topology-correction of cortical surfaces using nonseparating loops. IEEE Trans Med Imaging. 2007;26(4):518–29.

    Article  PubMed  Google Scholar 

  28. Thomas BA, Cuplov V, Bousse A, Mendes A, Thielemans K, Hutton BF, et al. PETPVC: a toolbox for performing partial volume correction techniques in positron emission tomography. Phys Med Biol. 2016;61(22):7975–93.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by research funds from GE Healthcare and Grants-in-Aid of Scientific research (C) (No. 15K08687), Grant-in-Aid for Scientific Research (B) (No. 15H04900) and Grant-in-Aid for Scientific Research on Innovative Areas (Brain Protein Aging and Dementia Control) (No. 26117003) from the Ministry of Education, Culture, Sports, Science and Technology, Japanese Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miho Shidahara.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shidahara, M., Thomas, B.A., Okamura, N. et al. A comparison of five partial volume correction methods for Tau and Amyloid PET imaging with [18F]THK5351 and [11C]PIB. Ann Nucl Med 31, 563–569 (2017). https://doi.org/10.1007/s12149-017-1185-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-017-1185-0

Keywords

Navigation