Skip to main content
Log in

Nuclear myocardial perfusion imaging with a cadmium–telluride semiconductor detector gamma camera in patients with acute myocardial infarction

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Objective

Since myocardial perfusion imaging (MPI) with conventional sodium iodine (NaI) device has low spatial resolution, there have been some cases in which small structures such as non-transmural myocardial infarction could not be properly detected. The purpose of this study was to evaluate potential usefulness of cadmium–telluride (CdTe) semiconductor detector-based high spatial resolution gamma cameras in detecting myocardial infarction sites, especially non-transmural infarction.

Methods

A total of 38 patients (mean age ± SD: 64 ± 21 year) who were clinically diagnosed with acute myocardial infarction were included. Twenty-eight cases of them were with ST segment elevation myocardial infarction (STEMI) and 10 cases with non-ST segment elevation myocardial infarction (NSTEMI). In all patients, myocardial perfusion single photon emission computed tomography images were acquired with Infinia (NaI device) and R1-M (CdTe device), and the images were compared concerning the detectability of acute myocardial infarction sites.

Results

The detection rates of the myocardial infarction site in cases with STEMI were 100 % both by NaI and CdTe images. In cases with NSTEMI, detection rate by NaI images was 50 %, while that of CdTe images was 100 % (p = 0.033). The summed rest score (SRS) value derived from CdTe images was significantly higher than that from NaI images in cases with STEMI [NaI images: 12 (7–18) versus CdTe images: 14 (9–20)] (p < 0.001). SRS derived from CdTe images was significantly higher than that derived from NaI images in cases with NSTEMI [NaI images: 2 (0–5) versus CdTe images: 6 (6–8)] (p = 0.006).

Conclusions

These results indicate that MPI using CdTe-semiconductor device will provide a much more accurate assessment of acute myocardial infarction in comparison to current methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tonino PA, De Bruyne B, Pijls NH, Siebert U, Ikeno F, van’t Veer M, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med. 2009;360:213–24.

    Article  CAS  PubMed  Google Scholar 

  2. Boiten HJ, van der Sijde JN, Ruitinga PR, Valkema R, Geleijnse ML, Sijbrands EJ, et al. Long-term prognostic value of exercise technetium-99 m tetrofosmin myocardial perfusion single-photon emission computed tomography. J Nucl Cardiol. 2012;19:907–13.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Hansen CL, Goldstein RA, Akinboboye OO, Berman DS, Botvinick EH, Churchwell KB, et al. Myocardial perfusion and function: single photon emission computed tomography. J Nucl Cardiol. 2007;14:e39–60.

    Article  PubMed  Google Scholar 

  4. Jaszczak RJ. The early years of single photon emission computed tomography (SPECT): an anthology of selected reminiscences. Phys Med Biol. 2006;51:R99–115.

    Article  PubMed  Google Scholar 

  5. Hachamovitch R, Hayes SW, Friedman JD, Cohen I, Berman DS. Comparison of the short-term survival benefit associated with revascularization compared with medical therapy in patients with no prior coronary artery disease undergoing stress myocardial perfusion single photon emission computed tomography. Circulation. 2003;107:2900–7.

    Article  PubMed  Google Scholar 

  6. Madsen MT. Recent advances in SPECT imaging. J Nucl Med. 2007;48:661–73.

    Article  PubMed  Google Scholar 

  7. Fukushima Y, Toba M, Ishihara K, Mizumura S, Seino T, Tanaka K, et al. Usefulness of 201TlCl/123I-BMIPP dual-myocardial SPECT for patients with non-ST segment elevation myocardial infarction. Ann Nucl Med. 2008;22:363–9.

    Article  PubMed  Google Scholar 

  8. Arruda-Olson AM, Roger VL, Jaffe AS, Hodge DO, Gibbons RJ, Miller TD. Troponin T levels and infarct size by SPECT myocardial perfusion imaging. JACC Cardiovasc Imaging. 2011;4:523–33.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Mori I, Takayama T, Motomura N. The CdTe detector module and its imaging performance. Ann Nucl Med. 2001;15:487–94.

    Article  CAS  PubMed  Google Scholar 

  10. Takahashi T, Mitani T, Kobayashi Y, Kouda M, Sato G, Watanabe S, et al. High-resolution Schottky CdTe diode detector. IEEE Trans Nucl Sci. 2002;49:1297–303.

    Article  CAS  Google Scholar 

  11. Matsumoto C, Takahashi T, Takizawa K, Ohno R, Ozaki T, Mori K, et al. Performance of a new Schottkey CdTe detector for hard X-ray spectroscopy. IEEE Trans Nucl Sci. 1998;45:428–32.

    Article  CAS  Google Scholar 

  12. Seino T, Kobashi K, Kiyanagi Y. A pulsed bias voltage shutdown circuit for a matrix readout system of a CdTe radiation detector. IEEE Trans Nucl Sci. 2010;57:726–31.

    Article  CAS  Google Scholar 

  13. Seino T, Ishitsu T, Ueno Y, Kobashi K. Biparametric correction methods using two shapers for In/CdTe/Pt radiation detector. Nucl Instrum Methods A. 2011;629:170–4.

    Article  CAS  Google Scholar 

  14. Chen H, Awadalla SA, Marthandam P, Iniewski K, Lu PH, Bindley G, et al. CZT device with improved sensitivity for medical imaging and homeland security applications. SPIE. 2009;7449:744902.

    Google Scholar 

  15. Chen H, Awadalla SA, Harris F, Pinghe Lu, Redden R, Bindley G, et al. Spectral response of THM grown CdZnTe crystals. IEEE Trans Nucl Sci. 2008;55:1567–72.

    Article  CAS  Google Scholar 

  16. Guerin L, Verger L, Rebuffel V, Monnet O, et al. A new architecture for pixellated solid state gamma camera used in nuclear medicine. IEEE Trans Nucl Sci. 2008;55:1573–80.

    Article  CAS  Google Scholar 

  17. Erlandsson K, Kacperski K, van Gramberg D, Hutton BF. Performance evaluation of D-SPECT: a novel SPECT system for nuclear cardiology. Phys Med Biol. 2009;54:2635–49.

    Article  PubMed  Google Scholar 

  18. Sharir T, Ben-Haim S, Merzon K, Prochorov V, Dickman D, Ben-Haim S, et al. High-speed myocardial perfusion imaging: initial clinical comparison with conventional dual detector anger camera imaging. JACC Cardiovasc Imaging. 2008;1:156–63.

    Article  PubMed  Google Scholar 

  19. Nakazato R, Berman DS, Gransar H, Hyun M, Miranda-Peats R, Kite FC, et al. Prognostic value of quantitative high-speed myocardial perfusion imaging. J Nucl Cardiol. 2012;19:1113–23.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Herzog BA, Buechel RR, Katz R, Brueckner M, Husmann L, Burger IA, et al. Nuclear myocardial perfusion imaging with a cadmium–zinc–telluride detector technique: optimized protocol for scan time reduction. J Nucl Med. 2010;51:46–51.

    Article  PubMed  Google Scholar 

  21. Tsuchiya K, Takahashi I, Kawaguchi T, Yokoi K, Morimoto Y, Ishitsu T, et al. Basic performance and stability of a CdTe solid-state detector panel. Ann Nucl Med. 2010;24:301–11.

    Article  CAS  PubMed  Google Scholar 

  22. Wackers FJ, Berman DS, Maddahi J, Watson DD, Beller GA, Strauss HW, et al. Technetium-99 m hexakis 2-methoxyisobutyl isonitrile: human biodistribution, dosimetry, safety, and preliminary comparison to thallium-201 for myocardial perfusion imaging. J Nucl Med. 1989;30:301–11.

    CAS  PubMed  Google Scholar 

  23. Kubo A, Nakamura K, Sanmiya T, Shimizu S, Hashimoto S, Iwanaga S, et al. Phase I clinical study on 99mTc-MIBI. Kakuigaku. 1991;28:1133–42.

    CAS  Google Scholar 

  24. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Int J Cardiovasc Imaging. 2002;18:539–42.

    PubMed  Google Scholar 

  25. Reyes E, Stirrup J, Roughton M, D’Souza S, Underwood SR, Anagnostopoulos C. Attenuation of adenosine-induced myocardial perfusion heterogeneity by atenolol and other cardioselective beta-adrenoceptor blockers: a crossover myocardial perfusion imaging study. J Nucl Med. 2010;51:1036–43.

    Article  PubMed  Google Scholar 

  26. Hachamovitch R, Berman DS, Shaw LJ, Kiat H, Cohen I, Cabico JA, et al. Incremental prognostic value of myocardial perfusion single photon emission computed tomography for the prediction of cardiac death: differential stratification for risk of cardiac death and myocardial infarction. Circulation. 1998;97:535–43.

    Article  CAS  PubMed  Google Scholar 

  27. Sharir T, Germano G, Kang X, Lewin HC, Miranda R, Cohen I, et al. Prediction of myocardial infarction versus cardiac death by gated myocardial perfusion SPECT: risk stratification by the amount of stress-induced ischemia and the poststress ejection fraction. J Nucl Med. 2001;42:831–7.

    CAS  PubMed  Google Scholar 

  28. Klocke FJ. Coronary blood flow in man. Prog Cardiovasc Dis. 1976;19:117–66.

    Article  CAS  PubMed  Google Scholar 

  29. Kurata A, Mochizuki T, Koyama Y, Haraikawa T, Suzuki J, Shigematsu Y, et al. Myocardial perfusion imaging using adenosine triphosphate stress multi-slice spiral computed tomography: alternative to stress myocardial perfusion scintigraphy. Circ J. 2005;69:550–7.

    Article  PubMed  Google Scholar 

  30. Nikolaou K, Knez A, Sagmeister S, Wintersperger BJ, Boekstegers P, Steinbeck G, et al. Assessment of myocardial infarctions using multidetector-row computed tomography. J Comput Assist Tomogr. 2004;28:286–92.

    Article  PubMed  Google Scholar 

  31. Al-Saadi N, Nagel E, Gross M, Bornstedt A, Schnackenburg B, Klein C, et al. Noninvasive detection of myocardial ischemia from perfusion reserve based on cardiovascular magnetic resonance. Circulation. 2000;101:1379–83.

    Article  CAS  PubMed  Google Scholar 

  32. Patel MR, Albert TS, Kandzari DE, Honeycutt EF, Shaw LK, Sketch MH Jr, et al. Acute myocardial infarction; safety of cardiac MR imaging after percutaneous revascularization with stents. Radiology. 2006;240:674–80.

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

All authors have no conflict of interests related to this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshimitsu Fukushima.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fukushima, Y., Kumita, Si., Kawaguchi, T. et al. Nuclear myocardial perfusion imaging with a cadmium–telluride semiconductor detector gamma camera in patients with acute myocardial infarction. Ann Nucl Med 28, 646–655 (2014). https://doi.org/10.1007/s12149-014-0859-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-014-0859-0

Keywords

Navigation