Skip to main content
Log in

Somatostatin receptor scintigraphy with 111In-octreotide in pulmonary carcinoid tumours correlated with pathological and 18FDG PET/CT findings

  • Original article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Purpose

Pulmonary carcinoid (PC) tumors are rare neoplasms of the lung with good prognosis but diagnosis may be demanding since there is no exclusive modality alone to clearly differentiate a PC tumor. The purpose of this study is to establish the diagnostic features of somatostatin receptor scintigraphy (SRS), comparatively (where available) with 18FDG PET/CT (PET/CT) correlated with histopathologic findings.

Methods

Twenty-one patients who underwent SRS with 111In-octreotide and were diagnosed as having PC tumors were retrospectively studied. Thirteen patients were performed PET/CT. Primary tumour size, Ki-67 indexes, image analysis data of SRS and PET/CT including maximum standardized uptake values (SUVmax) together with false negative, false positive, true positive and true negative lesions were documented and discussed.

Results

Eleven (52.4 %) patients were typical (TC) and 10 (47.6 %) were atypical carcinoids (AC) with mean Ki-67 indexes of 2.1 and 24 %, respectively. Patients underwent SRS for solitary pulmonary nodule (SPN) characterization (n = 12) and determination of disease extension (n = 9). Overall sensitivity and specificity of SRS in the detection of primary tumour, lymph nodes (LN) and distant metastasis (DM) were 76 and 97 %, respectively, whereas, positive and negative predictive values were 95 and 86 %. PET/CT was performed for determining disease spread (n = 3) and metabolic characterization (n = 10) of SPNs. Mean SUVmax in the primary pulmonary lesion in TCs and ACs were 2.9 ± 0.8 and 7.9 ± 5.4, respectively. Nodal involvement (n = 5) and DM (n = 3) were also detected. Sensitivity and specificity of PET/CT in the detection of primary tumour, LNs and DM were 85 and 89.4 %, respectively.

Conclusion

SRS is useful in the diagnosis and monitoring of PC tumors when incorporated with 18FDG PET/CT as a primary staging tool particularly in the determination of disease spread.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Travis WD. Pathology of lung cancer. Clin Chest Med. 2011;32:669–92.

    Article  PubMed  Google Scholar 

  2. Travis WD, Brambilla E, Muller-Hermelink HK, Harris CC. Tumours of the lung, pleura, thymus and heart. Lyon: IARC Press; 2004.

    Google Scholar 

  3. Beasley MB, Thunnissen FB, Brambilla E, Hasleton P, Steele R, Hammar SP, et al. Pulmonary atypical carcinoid: predictors of survival in 106 cases. Hum Pathol. 2000;31:1255–65.

    Article  PubMed  CAS  Google Scholar 

  4. Gustafsson BI, Kidd M, Chan A, Malfertheiner MV, Modlin IM. Bronchopulmonary neuroendocrine tumours. Cancer. 2008;113:5–21.

    Article  PubMed  CAS  Google Scholar 

  5. Bertino EM, Confer PD, Colonna JE, Ross P, Otterson GA. Pulmonary neuroendocrine/carcinoid tumors: a review article. Cancer. 2009;115:4434–41.

    Article  PubMed  Google Scholar 

  6. Erasmus JJ, McAdams HP, Patz EF Jr, Coleman RE, Ahuja V, Goodman PC. Evaluation of primary pulmonary carcinoid tumors using FDG PET. AJR. 1998;170:1369–73.

    PubMed  CAS  Google Scholar 

  7. Daniels CE, Lowe VJ, Aubry MC, Allen MS, Jett JR. The utility of fluorodeoxyglucose positron emission tomography in the evaluation of carcinoid tumors presenting as pulmonary nodules. Chest. 2007;131:255–60.

    Article  PubMed  Google Scholar 

  8. Wartski M, Alberini JL, Leroy-Ladurie F, De Montpreville V, Nguyen C, Corone C, et al. Typical and atypical bronchopulmonary carcinoid tumors on FDG PET/CT imaging. Clin Nucl Med. 2004;29:752–3.

    Article  PubMed  Google Scholar 

  9. Volante M, Bozzalla-Cassione F, Papotti M. Somatostatin receptors and their interest in diagnostic pathology. Endocr Pathol. 2004;15:275–91.

    Article  PubMed  CAS  Google Scholar 

  10. Righi L, Volante M, Tavaglione V, Billè A, Daniele L, Angusti T, et al. Somatostatin receptor tissue distribution in lung neuroendocrine tumours: a clinicopathologic and immunohistochemical study of 218 ‘clinically aggressive’ cases. Ann Oncol. 2010;21:548–55.

    Article  PubMed  CAS  Google Scholar 

  11. Belhocine T, Foidart J, Rigo P, Najjar F, Thiry A, Quatresooz P, et al. Fluorodeoxyglucose positron emission tomography and somatostatin receptor scintigraphy for diagnosing and staging carcinoid tumours: correlations with the pathological indexes p53 and Ki-67. Nucl Med Commun. 2002;23:727–34.

    Article  PubMed  CAS  Google Scholar 

  12. Laitinen KLJ, Soini Y, Mattila J, Paakko P. Atypical bronchopulmonary carcinoids show a tendency toward increased apoptotic and proliferative activity. Cancer. 2000;88:1590–8.

    Article  PubMed  CAS  Google Scholar 

  13. Yellin A, Zwas ST, Rozenman J, Simansky DA, Goshen E. Experience with somatostatin receptor scintigraphy in the management of pulmonary carcinoid tumors. Isr Med Assoc J. 2005;7:712–6.

    PubMed  Google Scholar 

  14. Buchmann I, Henze M, Engelbrecht S, Buchmann I, Henze M, Engelbrecht S, et al. Comparison of 68 Ga-DOTATOC PET and 111In-DTPAOC (OctreoScan) SPECT in patients with neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2007;34:1617–26.

    Article  PubMed  CAS  Google Scholar 

  15. Kayani I, Bomanji JB, Groves A, Conway G, Gacinovic S, Win T, et al. Functional imaging of neuroendocrine tumors with combined PET/CT using 68 Ga-DOTATATE (DOTA-DPhe(1), Tyr(3)-octreotate) and 18F-FDG. Cancer. 2008;112:2447–55.

    Article  PubMed  Google Scholar 

  16. Gabriel M, Decristoforo C, Kendler D, Dobrozemsky G, Heute D, Uprimny C, et al. 68Ga-DOTATyr3-octreotide PET in neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and CT. J Nucl Med. 2007;48:508–18.

    Article  PubMed  CAS  Google Scholar 

  17. Jindal T, Kumar A, Venkitaraman B, Dutta R, Kumar R. Role of (68)Ga-DOTATOC PET/CT in the evaluation of primary pulmonary carcinoids. Intern Med. 2010;25:386–91.

    Google Scholar 

  18. Cloran FJ, Banks KP, Song WS, Kim Y, Bradley YC. Limitations of dual time point PET in the assessment of lung nodules with low FDG avidity. Lung Cancer. 2010;68:66–71.

    Article  PubMed  Google Scholar 

  19. Chong S, Lee KS, Chung MJ, Han J, Kwon OJ, Kim TS. Neuroendocrine tumors of the lung: clinical, pathologic, and imaging findings. Radiographics. 2006;26:41–57. (discussion 57–58).

    Article  PubMed  Google Scholar 

  20. Krüger S, Buck AK, Blumstein NM, Pauls S, Schelzig H, Kropf C, et al. Use of integrated FDG PET/CT imaging in pulmonary carcinoid tumours. J Intern Med. 2006;260:545–50.

    Article  PubMed  Google Scholar 

  21. Binderup T, Knigge U, Loft A, Mortensen J, Pfeifer A, Federspiel B, et al. Functional imaging of neuroendocrine tumors: a head-to-head comparison of somatostatin receptor scintigraphy, 123I-MIBG scintigraphy, and 18F-FDG PET. J Nucl Med. 2010;51:704–12.

    Article  PubMed  Google Scholar 

  22. Kayani I, Conry BG, Groves AM, Win T, Dickson J, Caplin M, et al. A comparison of 68 Ga-DOTATATE and 18F-FDG PET/CT in pulmonary neuroendocrine tumors. J Nucl Med. 2009;50:1927–32.

    Article  PubMed  Google Scholar 

  23. Jindal T, Kumar A, Venkitaraman B, Meena M, Kumar R, Malhotra A, et al. Evaluation of the role of [18F]FDG PET/CT and [68 Ga]DOTATOC-PET/CT in differentiating typical and atypical pulmonary carcinoids. Cancer Imaging. 2011;11:70–5.

    Article  PubMed  Google Scholar 

  24. Reubi JC, Waser B, Schaer JC, Laissue JA. Somatostatin receptor sst1–sst5 expression in normal and neoplastic human tissues using receptor autoradiography with subtype-selective ligands. Eur J Nucl Med. 2001;28:836–46.

    Article  PubMed  CAS  Google Scholar 

  25. Vanhagen PM, Krenning EP, Reubi JC, Kwekkeboom DJ, Bakker WH, Mulder AH, et al. Somatostatin analogue scintigraphy in granulomatous diseases. Eur J Nucl Med. 1994;21:497–502.

    Article  PubMed  CAS  Google Scholar 

  26. Ferolla P, Faggiano A, Avenia N, Milone F, Masone S, Giampaglia F, et al. Epidemiology of non gastroenteropancreatic (neuro)endocrine tumours. Clin Endocrinol. 2007;66:1–6.

    CAS  Google Scholar 

  27. Ferguson MK, Landreneau RJ, Hazelrigg SR, Altorki NK, Naunheim KS, Zwischenberger JB, et al. Long-term outcome after resection for bronchial carcinoid tumors. Eur J Cardiothorac Surg. 2000;18:156–61.

    Article  PubMed  CAS  Google Scholar 

  28. Filosso PL, Rena O, Donati G, Casadio C, Ruffini E, Papalia E, et al. Bronchial carcinoid tumours: surgical management and long-term outcome. J Thorac Cardiovasc Surg. 2002;123:303–9.

    Article  PubMed  Google Scholar 

  29. Harpole DH, Feldman JM, Buchanan S, Young WG, Wolfe WG. Bronchial carcinoid tumours: a retrospective analysis of 126 patients. Ann Thorac Surg. 1992;54:50–5.

    Article  PubMed  Google Scholar 

  30. Modlin IM, Sandor A. An analysis of 8305 cases of carcinoid tumors. Cancer. 1997;79:813–29.

    Article  PubMed  CAS  Google Scholar 

  31. Fink G, Krelbaum T, Yellin A, Bendayan D, Saute M, Glazer M, et al. Pulmonary carcinoid: presentation, diagnosis, and outcome in 142 cases in Israel and review of 640 cases from the literature. Chest. 2001;119:1647–51.

    Article  PubMed  CAS  Google Scholar 

  32. Skuladottir H, Hirsch FR, Hansen HH, Olsen JH. Pulmonary neuroendocrine tumors: incidence and prognosis of histological subtypes. A population-based study in Denmark. Lung Cancer. 2002;37:127–35.

    Article  PubMed  Google Scholar 

  33. Schrevens L, Vansteenkiste J, Deneffe G, De Leyn P, Verbeken E, Vandenberghe T, et al. Clinical-radiological presentation and outcome of surgically treated pulmonary carcinoid tumours: a long-term single institution experience. Lung Cancer. 2004;43:39–45.

    Article  PubMed  Google Scholar 

  34. Thomas CF Jr, Tazelaar HD, Jett JR. Typical and atypical pulmonary carcinoids: outcome in patients presenting with regional lymph node involvement. Chest. 2001;119:1143–50.

    Article  PubMed  Google Scholar 

  35. Garin E, Le Jeune F, Devillers A, Cuggia M, de Lajarte-Thirouard AS, et al. Predictive value of 18F-FDG PET and somatostatin receptor scintigraphy in patients with metastatic endocrine tumors. J Nucl Med. 2009;50:858–64.

    Article  PubMed  CAS  Google Scholar 

  36. Abgral R, Leboulleux S, Déandreis D, Aupérin A, Lumbroso J, Dromain C, et al. Performance of (18)fluorodeoxyglucose-positron emission tomography and somatostatin receptor scintigraphy for high Ki67 (≥10 %) well-differentiated endocrine carcinoma staging. J Clin Endocrinol Metab. 2011;96:665–71.

    Article  PubMed  CAS  Google Scholar 

  37. Vilar E, Salazar R, Pérez-García J, Cortes J, Oberg K, Tabernero J. Chemotherapy and role of the proliferation marker Ki-67 in digestive neuroendocrine tumors. Endocr Relat Cancer. 2007;14:221–32.

    Article  PubMed  CAS  Google Scholar 

  38. Binderup T, Knigge U, Loft A, Federspiel B, Kjaer A. 18F-fluorodeoxyglucose positron emission tomography predicts survival of patients with neuroendocrine tumors. Clin Cancer Res. 2010;16:978–85.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serkan Kuyumcu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuyumcu, S., Adalet, I., Sanli, Y. et al. Somatostatin receptor scintigraphy with 111In-octreotide in pulmonary carcinoid tumours correlated with pathological and 18FDG PET/CT findings. Ann Nucl Med 26, 689–697 (2012). https://doi.org/10.1007/s12149-012-0628-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-012-0628-x

Keywords

Navigation