Skip to main content
Log in

Assignment of 1H, 13C and 15N resonances and secondary structure of the Rgd1-RhoGAP domain

  • Article
  • Published:
Biomolecular NMR Assignments Aims and scope Submit manuscript

Abstract

The protein Rgd1 is involved in the regulation of cytoskeleton formation and in signalling pathways that control cell polarity and growth in Saccharomyces cerevisiae. Rgd1p is composed of a F-BAR domain required for membrane binding and a RhoGAP domain responsible for activating Rho3p and Rho4p, two GTPases respectively involved in bud growth and cytokinesis. Rgd1p is recruited to the membrane through interactions with phosphoinositide lipids, which bind the two isolated domains and stimulate the RhoGAP activity on Rho4p. As previously shown by crystallography, the membrane-binding F-BAR domain contains a conserved inositol phosphate binding site, which explains the preferential binding of phosphoinositides. In contrast, RhoGAP domains are not expected to bind lipids. In order to unravel this puzzling feature, we solved the three-dimensional structure of the isolated protein and found a cryptic phosphoinositide binding site involving non conserved residues (Martinez et al. 2017). The assignment of the resonances and secondary structure of Rgd1-RhoGAP (aa 450–666) is presented here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

BAR:

Bin-Amphiphysin-Rvs (BAR)

DLC1:

Deleted in liver cancer 1

F-BAR:

F-BAR FCH, and BAR; (FCH = fes, CIP4 homology)

G protein:

Guanine nucleotide-binding proteins

HSQC:

Heteronuclear single quantum coherence transfer

Ni–NTA:

Nickel–nitrilotriacetic acid

PtdIns(3,4,5)P3 :

Phosphatidylinositol-3,4,5-trisphosphate

PtdIns(4,5)P2 :

Phosphatidylinositol-4,5-bisphosphate

PtdIns(4)P:

Phosphatidylinositol-4-phosphate

Rgd1-RhoGAP:

RhoGAP domain from related GAP domain 1 protein

Rho:

Ras homology

References

  • Adamo JE, Rossi G, Brennwald P (1999) The Rho GTPase Rho3 has a direct role in exocytosis that is distinct from its role in actin polarity. Mol Biol Cell 10:4121–4133

    Article  Google Scholar 

  • Barrett T, Xiao B, Dodson EJ, Dodson G, Ludbrook SB, Nurmahomed K, Gamblin SJ, Musacchio A, Smerdon SJ (1997) The structure of the GTPase-activating domain from p50RhoGAP. Eccleston JF Nature 385:458–461

    Article  Google Scholar 

  • Bertin A, McMurray MA, Thai L, Garcia G, Votin V, Grob P, Allyn T, Thorner J, Nogales E (2010) Phosphatidylinositol-4,5-bisphosphate promotes budding yeast septin filament assembly and organization. J Mol Biol 404:711–731

    Article  Google Scholar 

  • Doignon F, Weinachter C, Roumanie O, Crouzet M (1999) The yeast. Rgd1p is a GTPase activating protein of the Rho3 and rho4 proteins. FEBS Lett 459:458–462

    Article  Google Scholar 

  • Drubin DG, Nelson WJ (1996) Origins of cell polarity. Cell 84: 335–344

    Article  Google Scholar 

  • Gong T, Liao Y, He F, Yang Y, Yang D-D, Chen X-D, Gao X-D (2013) Control of polarized growth by the Rho family GTPase Rho4 in budding yeast: requirement of the N-terminal extension of Rho4 and regulation by the Rho GTPase-activating protein Bem2. Eukaryotic Cell 12:368–377

    Article  Google Scholar 

  • Iden S, Collard JG (2008) Crosstalk between small GTPases and polarity proteins in cell polarization. Nat Rev Mol Cell Biol 9:846–859

    Article  Google Scholar 

  • Martinez D, Langlois d’Estaintot B, Granier T, Tolchard J, Courrèges C, Prouzet-Mauléon V, Huhues M, Gallois B, Doignon F, Odaert B (2017) Structural evidence of a phosphoinositide binding site in the Rgd1-RhoGAP domain. Biochem J 474(19):3307–3319

    Article  Google Scholar 

  • Moravcevic K.,Alvarado D, Schmitz KR, Kenniston JA, Mendrola JM, Ferguson KM, Lemmon MA (2015) Comparison of Saccharomyces cerevisiae F-BAR domain structures reveals a conserved inositol phosphate binding site. Structure 23:352–363

    Article  Google Scholar 

  • Nobes C, Hall A (1994) Regulation and function of the Rho-subfamily of small GTPases. Curr Opin Genet Dev 4:77–81

    Article  Google Scholar 

  • Odaert B, Prouzet-Mauleon V, Dupuy J, Crouzet M, Bonneu M, Santarelli X, Viellemard A, Thoraval D, Doignon F, Hugues M (2011) Evidence for specific interaction between the RhoGAP domain from the yeast Rgd1 protein and phosphoinositides. Biochem Biophys Res Commun 405:74–78

    Article  Google Scholar 

  • Prouzet-Mauleon V, Lefebvre F, Thoraval D, Crouzet M, Doignon F (2008) Phosphoinositides affect both the cellular distribution and activity of the F-BAR-containing RhoGAP Rgd1p in yeast. J Biol Chem 283:33249–33257

    Article  Google Scholar 

  • Sattler M, Schleucher J, Griesinger C (1999) Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients. Prog NMR Spectr 34:93–158

    Article  Google Scholar 

  • Schmid SL, Mettlen M (2013) Cell biology: lipid switches and traffic control. Nature 499:161–162

    Article  ADS  Google Scholar 

  • Skinner SP, Fogh RH, Boucher W, Ragan TJ, Mureddu LG, Vuister GW (2016) CcpNmr Analysisassign: a flexible platform for integrated NMR analysis. J Biomol NMR 66:111–124

    Article  Google Scholar 

  • Wishart DS, Bigam CG, Yao J, Abildgaard F, Dyson HJ, Oldfield E, Markley JL (1995) Sykes BD 1H, 13C and 15N chemical shift referencing in biomolecular NMR. J Biomol NMR 6:135–140

    Article  Google Scholar 

  • Yakir-Tamang L, Gerst JE (2009) Phosphoinositides, exocytosis and polarity in yeast: all about actin? Trends Cell Biol 19:677–684

    Article  Google Scholar 

Download references

Acknowledgements

We thank the TGIR-RMN-THC Fr3050 CNRS and the structural biology platform at the Institut Européen de Chimie et Biologie (UMS 3033) for access to NMR spectrometers and technical assistance. The authors are grateful to Annie Clavères for expert technical assistance. D. M. was supported by a French PhD fellowship afforded to the University of Bordeaux by the Ministère de la Recherche (MNERT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoît Odaert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martinez, D., Prouzet-Mauléon, V., Hugues, M. et al. Assignment of 1H, 13C and 15N resonances and secondary structure of the Rgd1-RhoGAP domain. Biomol NMR Assign 12, 129–132 (2018). https://doi.org/10.1007/s12104-017-9794-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12104-017-9794-z

Keywords

Navigation