Skip to main content
Log in

NMR resonance assignments for the tetramethylrhodamine binding RNA aptamer 3 in complex with the ligand 5-carboxy-tetramethylrhodamine

  • Article
  • Published:
Biomolecular NMR Assignments Aims and scope Submit manuscript

Abstract

RNA aptamers are used in a wide range of biotechnological or biomedical applications. In many cases the high resolution structures of these aptamers in their ligand-complexes have revealed fundamental aspects of RNA folding and RNA small molecule interactions. Fluorescent RNA-ligand complexes in particular find applications as optical sensors or as endogenous fluorescent tags for RNA tracking in vivo. Structures of RNA aptamers and aptamer ligand complexes constitute the starting point for rational function directed optimization approaches. Here, we present the NMR resonance assignment of an RNA aptamer binding to the fluorescent ligand tetramethylrhodamine (TMR) in complex with the ligand 5-carboxy-tetramethylrhodamine (5-TAMRA) as a starting point for a high-resolution structure determination using NMR spectroscopy in solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Carothers JM, Goler JA, Kapoor Y, Lara L, Keasling JD (2010) Selecting RNA aptamers for synthetic biology: investigating magnesium dependence and predicting binding affinity. Nucl Acids Res 38:2736–2747

    Article  Google Scholar 

  • Dallmann A, Simon B, Duszczyk MM, Kooshapur H, Pardi A, Bermel W, Sattler M (2013) Efficient detection of hydrogen bonds in dynamic regions of RNA by sensitivity-optimized NMR pulse sequences. Angew Chem Int Ed Engl 52:10487–10490

    Article  Google Scholar 

  • Dingley AJ, Grzesiek S (1998) Direct observation of hydrogen bonds in nucleic acid base pairs by internucleotide (2)J(NN) couplings. J Am Chem Soc 120:8293–8297

    Article  Google Scholar 

  • Duchardt-Ferner E, Weigand JE, Ohlenschläger O, Schmidtke SR, Suess B, Wöhnert J (2010) Highly modular structure and ligand binding by conformational capture in a minimalistic riboswitch. Angew Chem Int Ed Engl 49:6216–6219

    Article  Google Scholar 

  • Duchardt-Ferner E, Gottstein-Schmidtke SR, Weigand JE, Ohlenschläger O, Wurm JP, Hammann C, Suess B, Wöhnert J (2016) What a difference an OH makes: conformational dynamics as the basis for the ligand specificity of the neomycin-sensing riboswitch. Angew Chem Int Ed Engl 55:1527–1530

    Article  Google Scholar 

  • Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    Article  ADS  Google Scholar 

  • Fiala R, Jiang F, Patel DJ (1996) Direct correlation of exchangeable and nonexchangeable protons on purine bases in C-13, N-15-labeled RNA using a HCCNH-TOCSY experiment. J Am Chem Soc 118:689–690

    Article  Google Scholar 

  • Fiala R, Jiang F, Sklenar V (1998) Sensitivity optimized HCN and HCNCH experiments for C-13/N-15 labeled oligonucleotides. J Biomol NMR 12:373–383

    Article  Google Scholar 

  • Fürtig B, Richter C, Bermel W, Schwalbe H (2004) New NMR experiments for RNA nucleobase resonance assignment and chemical shift analysis of an RNA UUCG tetraloop. J Biomol NMR 28:69–79

    Article  Google Scholar 

  • Hermann T, Patel DJ (2000) Adaptive recognition by nucleic acid aptamers. Science 287:820–825

    Article  ADS  Google Scholar 

  • Heus HA, Pardi A (1991) Structural features that give rise to the unusual stability of RNA hairpins containing GNRA loops. Science 253:191–194

    Article  ADS  Google Scholar 

  • Jiang F, Kumar RA, Jones RA, Patel DJ (1996) Structural basis of RNA folding and recognition in an AMP-RNA aptamer complex. Nature 382:183–186

    Article  ADS  Google Scholar 

  • Legault P, Farmer BT, Mueller L, Pardi A (1994) Through-bond correlation of adenine protons in a C-13-labeled ribozyme. J Am Chem Soc 116:2203–2204

    Article  Google Scholar 

  • Majumdar A, Kettani A, Skripkin E (1999) Observation and measurement of internucleotide 2JNN coupling constants between 15 N nuclei with widely separated chemical shifts. J Biomol NMR 14:67–70

    Article  Google Scholar 

  • Marino JP, Schwalbe H, Anklin C, Bermel W, Crothers DM, Griesinger C (1994) A 3-dimensional triple-resonance H-1, C-13, P-31 experiment—sequential through-bond correlation of ribose protons and intervening phosphorus along the RNA oligonucleotide backbone. J Am Chem Soc 116:6472–6473

    Article  Google Scholar 

  • Marino JP, Diener JL, Moore PB, Griesinger C (1997) Multiple-quantum coherence dramatically enhances the sensitivity of CH and CH2 correlations in uniformly C-13-labeled RNA. J Am Chem Soc 119:7361–7366

    Article  Google Scholar 

  • Milligan JF, Uhlenbeck OC (1989) Synthesis of small RNAs using T7 RNA polymerase. Methods Enzymol 180:51–62

    Article  Google Scholar 

  • Nikonowicz EP, Pardi A (1992) Three-dimensional heteronuclear NMR studies of RNA. Nature 355:184–186

    Article  ADS  Google Scholar 

  • Ohlenschläger O, Wöhnert J, Bucci E, Seitz S, Häfner S, Ramachandran R, Zell R, Görlach M (2004) The structure of the stemloop D subdomain of coxsackievirus B3 cloverleaf RNA and its interaction with the proteinase 3C. Structure 12:237–248

    Article  Google Scholar 

  • Phan AT (2000) Long-range imino proton-13C J-couplings and the through-bond correlation of imino and non-exchangeable protons in unlabeled DNA. J Biomol NMR 16:175–178

    Article  Google Scholar 

  • Piotto M, Saudek V, Sklenar V (1992) Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J Biomol NMR 2:661–665

    Article  Google Scholar 

  • Simon B, Zanier K, Sattler M (2001) A TROSY relayed HCCH-COSY experiment for correlating adenine H2/H8 resonances in uniformly 13C-labeled RNA molecules. J Biomol NMR 20:173–176

    Article  Google Scholar 

  • Sklenar V, Brooks BR, Zon G, Bax A (1987) Absorption mode two-dimensional NOE spectroscopy of exchangeable protons in oligonucleotides. FEBS Lett 216:249–252

    Article  Google Scholar 

  • Sklenar V, Peterson RD, Rejante MR, Feigon J (1993) 2-Dimensional and 3-dimensional HCN experiments for correlating base and sugar resonances in N-15, C-13-labeled RNA oligonucleotides. J Biomol NMR 3:721–727

    Article  Google Scholar 

  • Sklenar V, Peterson RD, Rejante MR, Feigon J (1994) Correlation of nucleotide base and sugar protons in a 15 N-labeled HIV-1 RNA oligonucleotide by 1H-15N HSQC experiments. J Biomol NMR 4:117–122

    Google Scholar 

  • Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    Article  ADS  Google Scholar 

  • Wijmenga SS, van Buuren BNM (1998) The use of NMR methods for conformational studies of nucleic acids. Prog Nucl Mag Res Spectrosc 32:287–387

    Article  Google Scholar 

  • Wöhnert J, Dingley AJ, Stoldt M, Görlach M, Grzesiek S, Brown LR (1999a) Direct identification of NH…N hydrogen bonds in non-canonical base pairs of RNA by NMR spectroscopy. Nucl Acids Res 27:3104–3110

    Article  Google Scholar 

  • Wöhnert J, Ramachandran R, Görlach M, Brown LR (1999b) Triple-resonance experiments for correlation of H5 and exchangeable pyrimidine base hydrogens in (13)C, (15)N-labeled RNA. J Magn Reson 139:430–433

    Article  ADS  Google Scholar 

  • Wunderlich CH, Spitzer R, Santner T, Fauster K, Tollinger M, Kreutz C (2012) Synthesis of (6-C-13)pyrimidine nucleotides as spin-labels for RNA dynamics. J Am Chem Soc 134:7558–7569

    Article  Google Scholar 

  • Yang Y, Kochoyan M, Burgstaller P, Westhof E, Famulok M (1996) Structural basis of ligand discrimination by two related RNA aptamers resolved by NMR spectroscopy. Science 272:1343–1347

    Article  ADS  Google Scholar 

  • Zimmermann GR, Jenison RD, Wick CL, Simorre JP, Pardi A (1997) Interlocking structural motifs mediate molecular discrimination by a theophylline-binding RNA. Nat Struct Biol 4:644–649

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Adolf-Messer Foundation, the Center for Biomagnetic Resonance (BMRZ) of the Goethe-University Frankfurt and the Deutsche Forschungsgemeinschaft (DFG) (SFB 902 “Molecular principles of RNA-based regulation” B10) and the Austrian Science Fund (FWF, projects P28725 and P 26550).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elke Duchardt-Ferner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duchardt-Ferner, E., Juen, M., Kreutz, C. et al. NMR resonance assignments for the tetramethylrhodamine binding RNA aptamer 3 in complex with the ligand 5-carboxy-tetramethylrhodamine. Biomol NMR Assign 11, 29–34 (2017). https://doi.org/10.1007/s12104-016-9715-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12104-016-9715-6

Keywords

Navigation