Skip to main content
Log in

1H, 15N, 13C resonance assignments for Saccharomyces cerevisiae Rad23 UBL domain

  • Article
  • Published:
Biomolecular NMR Assignments Aims and scope Submit manuscript

Abstract

Rad23 functions in nucleotide excision repair and proteasome-mediated protein degradation. It has four distinct structural domains that are connected by flexible linker regions, including an N-terminal ubiquitin-like (UBL) domain that binds proteasomes. We report in this NMR study the 1H, 15N and 13C resonance assignments for the backbone and side chain atoms of the Rad23 UBL domain (Rad23UBL) with BioMagResBank accession number 25825. We find that a Rad23 proline amino acid (P20) located in a loop undergoes isomerization. The secondary structural elements predicted from the NMR data fit well to that of the Rad23UBL when complexed with E4 ubiquitin ligase Ufd2, as reported in a crystallographic structure. These complete assignments can be used to study the protein dynamics of the Rad23UBL and its interaction of with other ubiquitin receptors or proteasome subunits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bartels C, Xia T-H, Billeter M, Güntert P, Wüthrich K (1995) The program XEASY for computer-supported NMR spectral analysis of biological macromolecules. J Biomol NMR 6:1–10

    Article  Google Scholar 

  • Bertolaet BL, Clarke DJ, Wolff M, Watson MH, Henze M, Divita G, Reed SI (2001) UBA domains of DNA damage-inducible proteins interact with ubiquitin. Nat Struct Biol 8:417–422. doi:10.1038/87575

    Article  Google Scholar 

  • Dantuma NP, Heinen C, Hoogstraten D (2009) The ubiquitin receptor Rad23: at the crossroads of nucleotide excision repair and proteasomal degradation. DNA Repair (Amst) 8:449–460. doi:10.1016/j.dnarep.2009.01.005

    Article  Google Scholar 

  • Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293

    Article  Google Scholar 

  • Elsasser S et al (2002) Proteasome subunit Rpn1 binds ubiquitin-like protein domains. Nat Cell Biol 4:725–730. doi:10.1038/ncb845

    Article  Google Scholar 

  • Fujiwara K et al (2004) Structure of the ubiquitin-interacting motif of S5a bound to the ubiquitin-like domain of HR23B. J Biol Chem 279:4760–4767. doi:10.1074/jbc.M309448200

    Article  Google Scholar 

  • Gomez TA, Kolawa N, Gee M, Sweredoski MJ, Deshaies RJ (2011) Identification of a functional docking site in the Rpn1 LRR domain for the UBA-UBL domain protein Ddi1. BMC Biol 9:33. doi:10.1186/1741-7007-9-33

    Article  Google Scholar 

  • Guzder SN, Sung P, Prakash L, Prakash S (1998) Affinity of yeast nucleotide excision repair factor 2, consisting of the Rad4 and Rad23 proteins, for ultraviolet damaged DNA. J Biol Chem 273:31541–31546

    Article  Google Scholar 

  • Hanzelmann P, Stingele J, Hofmann K, Schindelin H, Raasi S (2010) The yeast E4 ubiquitin ligase Ufd2 interacts with the ubiquitin-like domains of Rad23 and Dsk2 via a novel and distinct ubiquitin-like binding domain. J Biol Chem 285:20390–20398. doi:10.1074/jbc.M110.112532

    Article  Google Scholar 

  • Hiyama H et al (1999) Interaction of hHR23 with S5a. The ubiquitin-like domain of hHR23 mediates interaction with S5a subunit of 26 S proteasome. J Biol Chem 274:28019–28025

    Article  Google Scholar 

  • Husnjak K et al (2008) Proteasome subunit Rpn13 is a novel ubiquitin receptor. Nature 453:481–488. doi:10.1038/nature06926

    Article  ADS  Google Scholar 

  • Kang Y, Vossler RA, Diaz-Martinez LA, Winter NS, Clarke DJ, Walters KJ (2006) UBL/UBA ubiquitin receptor proteins bind a common tetraubiquitin chain. J Mol Biol 356:1027–1035. doi:10.1016/j.jmb.2005.12.001

    Article  Google Scholar 

  • Kang Y, Chen X, Lary JW, Cole JL, Walters KJ (2007a) Defining how ubiquitin receptors hHR23a and S5a bind polyubiquitin. J Mol Biol 369:168–176. doi:10.1016/j.jmb.2007.03.008

    Article  Google Scholar 

  • Kang Y, Zhang N, Koepp DM, Walters KJ (2007b) Ubiquitin receptor proteins hHR23a and hPLIC2 interact. J Mol Biol 365:1093–1101. doi:10.1016/j.jmb.2006.10.056

    Article  Google Scholar 

  • Mueller TD, Feigon J (2003) Structural determinants for the binding of ubiquitin-like domains to the proteasome. EMBO J 22:4634–4645. doi:10.1093/emboj/cdg467

    Article  Google Scholar 

  • Rosenzweig R, Bronner V, Zhang D, Fushman D, Glickman MH (2012) Rpn1 and Rpn2 coordinate ubiquitin processing factors at proteasome. J Biol Chem 287:14659–14671. doi:10.1074/jbc.M111.316323

    Article  Google Scholar 

  • Ryu KS, Lee KJ, Bae SH, Kim BK, Kim KA, Choi BS (2003) Binding surface mapping of intra- and interdomain interactions among hHR23B, ubiquitin, and polyubiquitin binding site 2 of S5a. J Biol Chem 278:36621–36627. doi:10.1074/jbc.M304628200

    Article  Google Scholar 

  • Shen Y, Delaglio F, Cornilescu G, Bax A (2009) TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 44:213–223. doi:10.1007/s10858-009-9333-z

    Article  Google Scholar 

  • Shi Y et al (2016) Rpn1 provides adjacent receptor sites for substrate binding and deubiquitination by the proteasome. Science 351:831. doi:10.1126/science.aad9421

    Article  Google Scholar 

  • Walters KJ, Lech PJ, Goh AM, Wang Q, Howley PM (2003) DNA-repair protein hHR23a alters its protein structure upon binding proteasomal subunit S5a. Proc Natl Acad Sci USA 100:12694–12699. doi:10.1073/pnas.1634989100

    Article  ADS  Google Scholar 

  • Wang Q, Goh AM, Howley PM, Walters KJ (2003) Ubiquitin recognition by the DNA repair protein hHR23a. Biochemistry 42:13529–13535. doi:10.1021/bi035391j

    Article  Google Scholar 

  • Wishart DS, Sykes BD (1994) The 13C chemical-shift index: a simple method for the identification of protein secondary structure using 13C chemical-shift data. J Biomol NMR 4:171–180

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research to K.J.W. We thank Janusz Koscielniak for his technical assistance with the NMR facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kylie J. Walters.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Walters, K.J. 1H, 15N, 13C resonance assignments for Saccharomyces cerevisiae Rad23 UBL domain. Biomol NMR Assign 10, 291–295 (2016). https://doi.org/10.1007/s12104-016-9686-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12104-016-9686-7

Keywords

Navigation