Skip to main content
Log in

Three-phase Z-complementary triads and almost complementary triads

  • Published:
Cryptography and Communications Aims and scope Submit manuscript

Abstract

A 3-phase Golay complementary triad (GCT) is a set of three sequences over the 3-phase alphabet {1, ω, ω2}, where \(\omega =e^{\frac {2\pi \sqrt {-1}}{3}}\) is a 3rd root of unity, whose aperiodic autocorrelations sum up to zero for each out-of-phase non-zero time-shifts. Recent results by Avis and Jedwab proved the non-existence of 3-phase GCTs of length N ≡ 4 (mod 6). In this paper, we introduce 3-phase Z-complementary triads (ZCTs) and almost-complementary triads (ACTs). We present systematic constructions of 3-phase ZCTs for various lengths including the case when N ≡ 4 (mod 6). We also analyse the peak-to-mean envelope power ratio (PMEPR) upper-bounds of the proposed ZCTs and ACTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adhikary, A.R., Liu, Z., Guan, Y.L., Majhi, S., Budishin, S.Z.: Optimal binary periodic almost-complementary pairs. IEEE Signal Process. Lett. 23(12), 1816–1820 (2016)

    Article  Google Scholar 

  2. Avis, A.A.: 3-Phase Golay Triads. Master’s thesis, Simon Fraser University (2008)

  3. Avis, A.A., Jedwab, J.: Three-phase Golay sequence and array triads. J. Comb. Theory, Ser. A 180, 10 (2019)

    MathSciNet  MATH  Google Scholar 

  4. Budisin, S.Z.: Efficient pulse compressor for Golay complementary sequences. Electron. Lett. 27(3), 219–220 (1991)

  5. Chen, H.H., Yeh, J.F., Suehiro, N.: A multicarrier CDMA architecture based on orthogonal complementary codes for new generations of wideband wireless communications. IEEE Commun. Mag. 39(10), 126–135 (2001)

    Article  Google Scholar 

  6. Chen, H.H., Chu, S.W., Guizani, M.: On next generation CDMA technologies: The real approach for perfect orthogonal code generation. IEEE Trans. Veh. Technol. 57(5), 2822–2833 (2008)

    Article  Google Scholar 

  7. Craigen, R., Holzmannb, W., Kharaghanib, H.: Complex Golay sequences: structure and applications, Complex Golay sequences: structure and applications. Discrete Math. 252, 73–89 (2002)

    Article  MathSciNet  Google Scholar 

  8. Davis, J.A., Jedwab, J.: Peak-to-mean power control in OFDM, Golay complementary sequences, and Reed-Muller codes. IEEE Trans. Inf. Theory 45(7), 2397–2417 (1999)

    Article  MathSciNet  Google Scholar 

  9. Fan, P., Yuan, W., Tu, Y.: Z-complementary binary sequences. IEEE Signal Process. Lett. 14(8), 509–512 (2007)

    Article  Google Scholar 

  10. Fiedler, F: Small Golay sequences. Adv. Math. Conmmun. 7(4), 379–407 (2013)

  11. Frank, R.: Polyphase complementary codes. IEEE Trans. Inf. Theory 26(6), 641–647 (1980)

    Article  MathSciNet  Google Scholar 

  12. Golay, M.J.E.: Static multislit spectrometry and its application to the panoramic display of infrared spectra. J. Opt. Soc. Amer. 41(7), 468–472 (1951)

    Article  Google Scholar 

  13. Gibson, R.G., Jedwab, J.: Quaternary Golay sequence pairs I: even length. Des. Codes Cryptogr. 59(1-3), 131–146 (2011)

    Article  MathSciNet  Google Scholar 

  14. Kumari, P., Choi, J., Gonzalezprelcic, N., Heath, R.W.: IEEE 802.11ad-based radar: An approach to joint vehicular communication-radar system. IEEE Trans. Veh. Technol. 67(4), 3012–3027 (2018)

    Article  Google Scholar 

  15. Liu, Z., Parampalli, U., Guan, Y.L.: Optimal odd-length binary z-complementary pairs. IEEE Trans. Inf. Theory 50(9), 5768–5781 (2014)

    Article  MathSciNet  Google Scholar 

  16. Liu, Z., Guan, Y.L., Chen, H.H.: Fractional-delay-resilient receiver design for interference-free MC-CDMA communications based on complete complementary codes. IEEE Trans. Wireless Commun. 14(3), 1226–1236 (2015)

    Article  Google Scholar 

  17. Nowicki, A., Secomski, W., Litniewski, J., Trots, I., Lewin, P.A.: On the application of signal compression using Golay’s codes sequences in ultrasound diagnostic. Arch. Acoust. 28(4), 313–324 (2004)

    Google Scholar 

  18. Ohyama, N., Honda, T., Tsujiuchi, J.: An advanced coded imaging without side lobes. Opt. Commun. 27(3), 339–344 (1978)

    Article  Google Scholar 

  19. Paterson, K.G.: Generalized Reed-Muller codes and power control in OFDM modulation. IEEE Trans. Inf. Theory 46(1), 104–120 (2000)

    Article  MathSciNet  Google Scholar 

  20. Pezeshki, A., Calderbank, A.R., Moran, W.: Howard.s.d.: Doppler resilient Golay complementary waveforms. IEEE Trans. Inf. Theory 54(9), 4254–4266 (2008)

    Article  Google Scholar 

  21. Spasojevic, P., Georghiades, C.N.: Complementary sequences for ISI channel estimation. IEEE Trans. Inf. Theory 47(3), 1145–1152 (2001)

    Article  MathSciNet  Google Scholar 

  22. Welti, G.R.: Quaternary codes for pulsed radar. IEEE Trans. Inf. Theory 6(3), 400–408 (1960)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuaijun Liu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Liu, S., Lei, X. et al. Three-phase Z-complementary triads and almost complementary triads. Cryptogr. Commun. 13, 763–773 (2021). https://doi.org/10.1007/s12095-021-00509-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12095-021-00509-8

Keywords

Mathematics Subject Classification (2010)

Navigation