Skip to main content
Log in

On the minimum weights of binary linear complementary dual codes

  • Published:
Cryptography and Communications Aims and scope Submit manuscript

Abstract

Linear complementary dual codes (or codes with complementary duals) are codes whose intersections with their dual codes are trivial. We study the largest minimum weights d(n,k) among all binary linear complementary dual [n,k] codes. We determine d(n,4) for n ≡ 2,3,4,5,6,9,10,13 (mod 15), and d(n,5) for n ≡ 3,4,5,7,11,19,20, 22,26 (mod 31). Combined with known results, d(n,k) are also determined for n ≤ 24.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Betsumiya, K., Harada, M.: Binary optimal odd formally self-dual codes. Des. Codes Crypt. 23, 11–21 (2001)

    Article  MathSciNet  Google Scholar 

  2. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system I: The user language. J. Symb. Comput. 24, 235–265 (1997)

    Article  MathSciNet  Google Scholar 

  3. Carlet, C., Guilley, S.: Complementary dual codes for counter-measures to side-channel attacks. Adv. Math. Commun. 10, 131–150 (2016)

    Article  MathSciNet  Google Scholar 

  4. Carlet, C., Mesnager, S., Tang, C., Qi, Y.: New characterization and parametrization of LCD codes. IEEE Trans. Inform. Theory 65, 39–49 (2019)

    Article  MathSciNet  Google Scholar 

  5. Carlet, C., Mesnager, S., Tang, C., Qi, Y., Pellikaan, R.: Linear codes over \(\mathbb {F}_{q}\) are equivalent to LCD codes for q > 3. IEEE Trans. Inform. Theory 64, 3010–3017 (2018)

    Article  MathSciNet  Google Scholar 

  6. Dodunekov, S.M., Encheva, S.B.: Uniqueness of some linear subcodes of the binary extended Golay code. Probl. Inf. Transm. 29, 38–43 (1993)

    MathSciNet  MATH  Google Scholar 

  7. Dougherty, S.T., Kim, J.-L., Ozkaya, B., Sok, L., Solé, P.: The combinatorics of LCD codes: linear programming bound and orthogonal matrices. Int. J. Inf. Coding Theory 4, 116–128 (2017)

    Article  MathSciNet  Google Scholar 

  8. Galvez, L., Kim, J.-L., Lee, N., Roe, Y.G., Won, B.-S.: Some bounds on binary LCD codes. Cryptogr. Commun. 10, 719–728 (2018)

    Article  MathSciNet  Google Scholar 

  9. Grassl, M.: Code tables: Bounds on the parameters of various types of codes, Available online at http://www.codetables.de/, Accessed on 2018-04-06

  10. Griesmer, J.H.: A bound for error-correcting codes. IBM J. Res. Develop. 4, 532–542 (1960)

    Article  MathSciNet  Google Scholar 

  11. Gulliver, T.A., Östergård, P.R.J.: Binary optimal linear rate 1/2 codes. Discrete Math. 283, 255–261 (2004)

    Article  MathSciNet  Google Scholar 

  12. Harada, M., Saito, K.: Binary linear complementary dual codes. Cryptogr. Commun. 11, 677–696 (2019)

    Article  MathSciNet  Google Scholar 

  13. Jaffe, D.B.: Optimal binary linear codes of length ≤ 30. Discrete Math. 223, 135–155 (2000)

    Article  MathSciNet  Google Scholar 

  14. Massey, J.L.: Linear codes with complementary duals. Discrete Math. 106/107, 337–342 (1992)

    Article  MathSciNet  Google Scholar 

  15. McKay, B.D., Piperno, A.: Practical graph isomorphism, II. J. Symbolic Comput. 60, 94–112 (2014)

    Article  MathSciNet  Google Scholar 

  16. Pless, V.: Introduction to the Theory of Error-Correcting Codes, 3rd edn. Wiley, New York (1998)

    Book  Google Scholar 

  17. Shoup, V.: NTL: A Library for doing Number Theory, Available online at http://www.shoup.net/ntl/

  18. Simonis, J.: The [18, 9, 6] code is unique. Discrete Math. 106/107, 439–448 (1992)

    Article  MathSciNet  Google Scholar 

  19. Simonis, J.: The [23, 14, 5] Wagner code is unique. Discrete Math. 213, 269–282 (2000)

    Article  MathSciNet  Google Scholar 

  20. Snover, S.L.: The Uniqueness of the Nordstrom–Robinson and the Golay Binary Codes, Ph.D Thesis, Michigan State Univ. (1973)

  21. van Tilborg, H.: On the uniqueness resp. nonexistence of certain codes meeting the Griesmer bound. Inform. Control. 44, 16–35 (1980)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by JSPS KAKENHI Grant Number 15H03633. In this work, the supercomputer of ACCMS, Kyoto University was partially used. The authors would like to thank the anonymous referees and Editor-in-Chief Claude Carlet for the useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaaki Harada.

Additional information

Dedicated to Professor Masaaki Kitazume on His 60th Birthday

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araya, M., Harada, M. On the minimum weights of binary linear complementary dual codes. Cryptogr. Commun. 12, 285–300 (2020). https://doi.org/10.1007/s12095-019-00402-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12095-019-00402-5

Keywords

Mathematics Subject Classification (2010)

Navigation