Skip to main content

Advertisement

Log in

Emerging roles of aerobic glycolysis in breast cancer

  • Review Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Altered aerobic glycolysis is a well-recognized characteristic of cancer cell energy metabolism, known as the Warburg effect. Even in the presence of abundant oxygen, a majority of tumor cells produce substantial amounts of energy through a high glycolytic metabolism, and breast cancer (BC) is no exception. Breast cancer continues to be the second leading cause of cancer-associated mortality in women worldwide. However, the precise role of aerobic glycolysis in the development of BC remains elusive. Therefore, the present review attempts to address the implication of key enzymes of the aerobic glycolytic pathway including hexokinase (HK), phosphofructokinase (PFK) and pyruvate kinase (PK), glucose transporters (GLUTs), together with related signaling pathways including protein kinase B(PI3K/AKT), mammalian target of rapamycin (mTOR) and adenosine monophosphate-activated protein kinase (AMPK) and transcription factors (c-myc, p53 and HIF-1) in the research of BC. Thus, the review of aerobic glycolysis in BC may evoke novel ideas for the BC treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108. https://doi.org/10.3322/caac.21262.

  2. Yang ZY, Di MY, Yuan JQ, Shen WX, Zheng DY, Chen JZ, et al. The prognostic value of phosphorylated Akt in breast cancer: a systematic review. Sci Rep. 2015;5:7758. https://doi.org/10.1038/srep07758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Li W, Hou JZ, Niu J, Xi ZQ, Ma C, Sun H, et al. Akt1 inhibition promotes breast cancer metastasis through EGFR-mediated beta-catenin nuclear accumulation. Cell Commun Signal. 2018;16(1):82. https://doi.org/10.1186/s12964-018-0295-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yousefi M, Nosrati R, Salmaninejad A, Dehghani S, Shahryari A, Saberi A. Organ-specific metastasis of breast cancer: molecular and cellular mechanisms underlying lung metastasis. Cell Oncol (Dordr). 2018;41(2):123–40. https://doi.org/10.1007/s13402-018-0376-6.

    Article  CAS  PubMed  Google Scholar 

  5. Prager GW, Braga S, Bystricky B, Qvortrup C, Criscitiello C, Esin E, et al. Global cancer control: responding to the growing burden, rising costs and inequalities in access. ESMO Open. 2018;3(2):e000285. https://doi.org/10.1136/esmoopen-2017-000285.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Dey N, De P, Leyland-Jones B. PI3K-AKT-mTOR inhibitors in breast cancers: From tumor cell signaling to clinical trials. Pharmacol Ther. 2017;175:91–106. https://doi.org/10.1016/j.pharmthera.2017.02.037.

    Article  CAS  PubMed  Google Scholar 

  7. Tang Y, Wang Y, Kiani MF, Wang B. Classification, treatment strategy, and associated drug resistance in breast cancer. Clin Breast Cancer. 2016;16(5):335–43. https://doi.org/10.1016/j.clbc.2016.05.012.

    Article  PubMed  Google Scholar 

  8. Wu L, Yang X. Targeting the hippo pathway for breast cancer therapy. Cancers. 2018. https://doi.org/10.3390/cancers10110422.

  9. Ganapathy-Kanniappan S. Taming tumor glycolysis and potential implications for immunotherapy. Front Oncol. 2017;7:36. https://doi.org/10.3389/fonc.2017.00036.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Li L, Liang Y, Kang L, Liu Y, Gao S, Chen S, et al. Transcriptional regulation of the Warburg effect in cancer by SIX1. Cancer Cell. 2018;33(3):368–85.e7. https://doi.org/10.1016/j.ccell.2018.01.010.

    Article  CAS  PubMed  Google Scholar 

  11. Shankar Babu M, Mahanta S, Lakhter AJ, Hato T, Paul S, Naidu SR. Lapachol inhibits glycolysis in cancer cells by targeting pyruvate kinase M2. PLoS ONE. 2018;13(2):e0191419. https://doi.org/10.1371/journal.pone.0191419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li S, Li J, Dai W, Zhang Q, Feng J, Wu L, et al. Genistein suppresses aerobic glycolysis and induces hepatocellular carcinoma cell death. Br J Cancer. 2017;117(10):1518–28. https://doi.org/10.1038/bjc.2017.323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Garber K. Energy deregulation: licensing tumors to grow. Science. 2006;312(5777):1158–9. https://doi.org/10.1126/science.312.5777.1158.

    Article  CAS  PubMed  Google Scholar 

  14. Li XB, Gu JD, Zhou QH. Review of aerobic glycolysis and its key enzymes—new targets for lung cancer therapy. Thorac Cancer. 2015;6(1):17–24. https://doi.org/10.1111/1759-7714.12148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tan VP, Miyamoto S. HK2/hexokinase-II integrates glycolysis and autophagy to confer cellular protection. Autophagy. 2015;11(6):963–4. https://doi.org/10.1080/15548627.2015.1042195.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Criss WE. A review of isozymes in cancer. Can Res. 1971;31(11):1523–42.

    CAS  Google Scholar 

  17. Wang L, Xiong H, Wu F, Zhang Y, Wang J, Zhao L, et al. Hexokinase 2-mediated Warburg effect is required for PTEN- and p53-deficiency-driven prostate cancer growth. Cell Rep. 2014;8(5):1461–74. https://doi.org/10.1016/j.celrep.2014.07.053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen J, Yu Y, Li H, Hu Q, Chen X, He Y, et al. Long non-coding RNA PVT1 promotes tumor progression by regulating the miR-143/HK2 axis in gallbladder cancer. Mol Cancer. 2019;18(1):33. https://doi.org/10.1186/s12943-019-0947-9.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Yang T, Ren C, Qiao P, Han X, Wang L, Lv S, et al. PIM2-mediated phosphorylation of hexokinase 2 is critical for tumor growth and paclitaxel resistance in breast cancer. Oncogene. 2018;37(45):5997–6009. https://doi.org/10.1038/s41388-018-0386-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hennipman A, Smits J, van Oirschot B, van Houwelingen JC, Rijksen G, Neyt JP, et al. Glycolytic enzymes in breast cancer, benign breast disease and normal breast tissue. Tumour Biol. 1987;8(5):251–63. https://doi.org/10.1159/000217529.

    Article  CAS  PubMed  Google Scholar 

  21. Brown RS, Goodman TM, Zasadny KR, Greenson JK, Wahl RL. Expression of hexokinase II and Glut-1 in untreated human breast cancer. Nucl Med Biol. 2002;29(4):443–53.

    Article  CAS  PubMed  Google Scholar 

  22. Sato-Tadano A, Suzuki T, Amari M, Takagi K, Miki Y, Tamaki K, et al. Hexokinase II in breast carcinoma: a potent prognostic factor associated with hypoxia-inducible factor-1alpha and Ki-67. Cancer Sci. 2013;104(10):1380–8. https://doi.org/10.1111/cas.12238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mathupala SP, Ko YH, Pedersen PL. Hexokinase-2 bound to mitochondria: cancer's stygian link to the "Warburg Effect" and a pivotal target for effective therapy. Semin Cancer Biol. 2009;19(1):17–24. https://doi.org/10.1016/j.semcancer.2008.11.006.

    Article  CAS  PubMed  Google Scholar 

  24. Tao L, Wei L, Liu Y, Ding Y, Liu X, Zhang X, et al. Gen-27, a newly synthesized flavonoid, inhibits glycolysis and induces cell apoptosis via suppression of hexokinase II in human breast cancer cells. Biochem Pharmacol. 2017;125:12–25. https://doi.org/10.1016/j.bcp.2016.11.001.

    Article  CAS  PubMed  Google Scholar 

  25. Christiansen JJ, Rajasekaran AK. Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis. Can Res. 2006;66(17):8319–26. https://doi.org/10.1158/0008-5472.can-06-0410.

    Article  CAS  Google Scholar 

  26. Jiang S, Zhang LF, Zhang HW, Hu S, Lu MH, Liang S, et al. A novel miR-155/miR-143 cascade controls glycolysis by regulating hexokinase 2 in breast cancer cells. EMBO J. 2012;31(8):1985–98. https://doi.org/10.1038/emboj.2012.45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Okar DA, Manzano A, Navarro-Sabate A, Riera L, Bartrons R, Lange AJ. PFK-2/FBPase-2: maker and breaker of the essential biofactor fructose-2,6-bisphosphate. Trends Biochem Sci. 2001;26(1):30–5.

    Article  CAS  PubMed  Google Scholar 

  28. Kim SG, Manes NP, El-Maghrabi MR, Lee YH. Crystal structure of the hypoxia-inducible form of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB3): a possible new target for cancer therapy. J Biol Chem. 2006;281(5):2939–44. https://doi.org/10.1074/jbc.M511019200.

    Article  CAS  PubMed  Google Scholar 

  29. Panigrahy D, Singer S, Shen LQ, Butterfield CE, Freedman DA, Chen EJ, et al. PPARgamma ligands inhibit primary tumor growth and metastasis by inhibiting angiogenesis. J Clin Investig. 2002;110(7):923–32. https://doi.org/10.1172/jci15634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. O'Neal J, Clem A, Reynolds L, Dougherty S, Imbert-Fernandez Y, Telang S, et al. Inhibition of 6-phosphofructo-2-kinase (PFKFB3) suppresses glucose metabolism and the growth of HER2+ breast cancer. Breast Cancer Res Treat. 2016;160(1):29–40. https://doi.org/10.1007/s10549-016-3968-8.

    Article  CAS  PubMed  Google Scholar 

  31. Peng F, Li Q, Sun JY, Luo Y, Chen M, Bao Y. PFKFB3 is involved in breast cancer proliferation, migration, invasion and angiogenesis. Int J Oncol. 2018;52(3):945–54. https://doi.org/10.3892/ijo.2018.4257.

    Article  CAS  PubMed  Google Scholar 

  32. Yalcin A, Clem BF, Imbert-Fernandez Y, Ozcan SC, Peker S, O'Neal J, et al. 6-Phosphofructo-2-kinase (PFKFB3) promotes cell cycle progression and suppresses apoptosis via Cdk1-mediated phosphorylation of p27. Cell Death Dis. 2014;5:e1337. https://doi.org/10.1038/cddis.2014.292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yalcin A, Clem BF, Simmons A, Lane A, Nelson K, Clem AL, et al. Nuclear targeting of 6-phosphofructo-2-kinase (PFKFB3) increases proliferation via cyclin-dependent kinases. J Biol Chem. 2009;284(36):24223–32. https://doi.org/10.1074/jbc.M109.016816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ge X, Lyu P, Cao Z, Li J, Guo G, Xia W, et al. Overexpression of miR-206 suppresses glycolysis, proliferation and migration in breast cancer cells via PFKFB3 targeting. Biochem Biophys Res Commun. 2015;463(4):1115–21. https://doi.org/10.1016/j.bbrc.2015.06.068.

    Article  CAS  PubMed  Google Scholar 

  35. Minchenko OH, Ochiai A, Opentanova IL, Ogura T, Minchenko DO, Caro J, et al. Overexpression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-4 in the human breast and colon malignant tumors. Biochimie. 2005;87(11):1005–100. https://doi.org/10.1016/j.biochi.2005.04.007.

    Article  CAS  PubMed  Google Scholar 

  36. Dasgupta S, Rajapakshe K, Zhu B, Nikolai BC, Yi P, Putluri N, et al. Metabolic enzyme PFKFB4 activates transcriptional coactivator SRC-3 to drive breast cancer. Nature. 2018;556(7700):249–54. https://doi.org/10.1038/s41586-018-0018-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Goncalves MD, Cantley LC. A glycolysis outsider steps into the cancer spotlight. Cell Metab. 2018;28(1):3–4. https://doi.org/10.1016/j.cmet.2018.06.017.

    Article  CAS  PubMed  Google Scholar 

  38. Harris I, McCracken S, Mak TW. PKM2: a gatekeeper between growth and survival. Cell Res. 2012;22(3):447–9. https://doi.org/10.1038/cr.2011.203.

    Article  CAS  PubMed  Google Scholar 

  39. Dayton TL, Jacks T, Vander Heiden MG. PKM2, cancer metabolism, and the road ahead. EMBO Rep. 2016;17(12):1721–30. https://doi.org/10.15252/embr.201643300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mendez-Lucas A, Li X, Hu J, Che L, Song X, Jia J, et al. Glucose catabolism in liver tumors induced by c-MYC can be sustained by various PKM1/PKM2 ratios and pyruvate kinase activities. Can Res. 2017;77(16):4355–64. https://doi.org/10.1158/0008-5472.can-17-0498.

    Article  Google Scholar 

  41. Clower CV, Chatterjee D, Wang Z, Cantley LC, Vander Heiden MG, Krainer AR. The alternative splicing repressors hnRNP A1/A2 and PTB influence pyruvate kinase isoform expression and cell metabolism. Proc Natl Acad Sci USA. 2010;107(5):1894–9. https://doi.org/10.1073/pnas.0914845107.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Christofk HR, Vander Heiden MG, Wu N, Asara JM, Cantley LC. Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature. 2008;452(7184):181–6. https://doi.org/10.1038/nature06667.

    Article  CAS  PubMed  Google Scholar 

  43. Lin Y, Lv F, Liu F, Guo X, Fan Y, Gu F, et al. High expression of pyruvate kinase M2 is associated with chemosensitivity to epirubicin and 5-fluorouracil in breast cancer. J Cancer. 2015;6(11):1130–9. https://doi.org/10.7150/jca.12719.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Benesch C, Schneider C, Voelker HU, Kapp M, Caffier H, Krockenberger M, et al. The clinicopathological and prognostic relevance of pyruvate kinase M2 and pAkt expression in breast cancer. Anticancer Res. 2010;30(5):1689–94.

    PubMed  Google Scholar 

  45. Guan M, Tong Y, Guan M, Liu X, Wang M, Niu R, et al. Lapatinib inhibits breast cancer cell proliferation by influencing PKM2 expression. Technol Cancer Res Treat. 2018;17:1533034617749418. https://doi.org/10.1177/1533034617749418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lee J, Kim HK, Han YM, Kim J. Pyruvate kinase isozyme type M2 (PKM2) interacts and cooperates with Oct-4 in regulating transcription. Int J Biochem Cell Biol. 2008;40(5):1043–54. https://doi.org/10.1016/j.biocel.2007.11.009.

    Article  CAS  PubMed  Google Scholar 

  47. Huang L, Yu Z, Zhang Z, Ma W, Song S, Huang G. Interaction with pyruvate kinase M2 destabilizes tristetraprolin by proteasome degradation and regulates cell proliferation in breast cancer. Sci Rep. 2016;6:22449. https://doi.org/10.1038/srep22449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yao A, Xiang Y, Si YR, Fan LJ, Li JP, Li H, et al. PKM2 promotes glucose metabolism through a let-7a-5p/Stat3/hnRNP-A1 regulatory feedback loop in breast cancer cells. J Cell Biochem. 2019;120(4):6542–54. https://doi.org/10.1002/jcb.27947.

    Article  CAS  PubMed  Google Scholar 

  49. Wen YY, Liu WT, Sun HR, Ge X, Shi ZM, Wang M, et al. IGF-1-mediated PKM2/beta-catenin/miR-152 regulatory circuit in breast cancer. Sci Rep. 2017;7(1):15897. https://doi.org/10.1038/s41598-017-15607-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Xu Q, Liu LZ, Yin Y, He J, Li Q, Qian X, et al. Regulatory circuit of PKM2/NF-kappaB/miR-148a/152-modulated tumor angiogenesis and cancer progression. Oncogene. 2015;34(43):5482–93. https://doi.org/10.1038/onc.2015.6.

    Article  CAS  PubMed  Google Scholar 

  51. Barron CC, Bilan PJ, Tsakiridis T, Tsiani E. Facilitative glucose transporters: Implications for cancer detection, prognosis and treatment. Metabolism. 2016;65(2):124–39. https://doi.org/10.1016/j.metabol.2015.10.007.

  52. Olson AL, Pessin JE. Structure, function, and regulation of the mammalian facilitative glucose transporter gene family. Annu Rev Nutr. 1996;16:235–56. https://doi.org/10.1146/annurev.nu.16.070196.001315.

    Article  CAS  PubMed  Google Scholar 

  53. Fukumoto H, Seino S, Imura H, Seino Y, Eddy RL, Fukushima Y, et al. Sequence, tissue distribution, and chromosomal localization of mRNA encoding a human glucose transporter-like protein. Proc Natl Acad Sci USA. 1988;85(15):5434–8. https://doi.org/10.1073/pnas.85.15.5434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Thorens B, Cheng ZQ, Brown D, Lodish HF. Liver glucose transporter: a basolateral protein in hepatocytes and intestine and kidney cells. Am J Physiol. 1990;259(6 Pt 1):C279–C285285. https://doi.org/10.1152/ajpcell.1990.259.2.C279.

    Article  CAS  PubMed  Google Scholar 

  55. Mueckler M, Thorens B. The SLC2 (GLUT) family of membrane transporters. Mol Aspects Med. 2013;34(2–3):121–38. https://doi.org/10.1016/j.mam.2012.07.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Huang S, Czech MP. The GLUT4 glucose transporter. Cell Metab. 2007;5(4):237–52. https://doi.org/10.1016/j.cmet.2007.03.006.

    Article  CAS  PubMed  Google Scholar 

  57. Younes M, Brown RW, Mody DR, Fernandez L, Laucirica R. GLUT1 expression in human breast carcinoma: correlation with known prognostic markers. Anticancer Res. 1995;15(6b):2895–8.

    CAS  PubMed  Google Scholar 

  58. Brown RS, Wahl RL. Overexpression of Glut-1 glucose transporter in human breast cancer. An immunohistochemical study. Cancer. 1993;72(10):2979–85. https://doi.org/10.1002/1097-0142(19931115)72:10%3c2979:aid-cncr2820721020%3e3.0.co;2-x.

    Article  CAS  PubMed  Google Scholar 

  59. Godoy A, Ulloa V, Rodriguez F, Reinicke K, Yanez AJ, Garcia Mde L, et al. Differential subcellular distribution of glucose transporters GLUT1-6 and GLUT9 in human cancer: ultrastructural localization of GLUT1 and GLUT5 in breast tumor tissues. J Cell Physiol. 2006;207(3):614–27. https://doi.org/10.1002/jcp.20606.

    Article  CAS  PubMed  Google Scholar 

  60. Garrido P, Osorio FG, Moran J, Cabello E, Alonso A, Freije JM, et al. Loss of GLUT4 induces metabolic reprogramming and impairs viability of breast cancer cells. J Cell Physiol. 2015;230(1):191–8. https://doi.org/10.1002/jcp.24698.

    Article  CAS  PubMed  Google Scholar 

  61. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. https://doi.org/10.1016/j.cell.2011.02.013.

    Article  CAS  PubMed  Google Scholar 

  62. Jia D, Lu M, Jung KH, Park JH, Yu L, Onuchic JN, et al. Elucidating cancer metabolic plasticity by coupling gene regulation with metabolic pathways. Proc Natl Acad Sci USA. 2019;116(9):3909–18. https://doi.org/10.1073/pnas.1816391116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Irey EA, Lassiter CM, Brady NJ, Chuntova P, Wang Y, Knutson TP, et al. JAK/STAT inhibition in macrophages promotes therapeutic resistance by inducing expression of protumorigenic factors. Proc Natl Acad Sci USA. 2019;116(25):12442–51. https://doi.org/10.1073/pnas.1816410116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Engelman JA, Luo J, Cantley LC. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet. 2006;7(8):606–19. https://doi.org/10.1038/nrg1879.

    Article  CAS  PubMed  Google Scholar 

  65. Yoshida GJ. Metabolic reprogramming: the emerging concept and associated therapeutic strategies. J Exp Clin Cancer Res. 2015;34:111. https://doi.org/10.1186/s13046-015-0221-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cai CF, Ye GD, Shen DY, Zhang W, Chen ML, Chen XX, et al. Chibby suppresses aerobic glycolysis and proliferation of nasopharyngeal carcinoma via the Wnt/beta-catenin-Lin28/let7-PDK1 cascade. J Exp Clin Cancer Res. 2018;37(1):104. https://doi.org/10.1186/s13046-018-0769-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Han J, Zhang L, Guo H, Wysham WZ, Roque DR, Willson AK, et al. Glucose promotes cell proliferation, glucose uptake and invasion in endometrial cancer cells via AMPK/mTOR/S6 and MAPK signaling. Gynecol Oncol. 2015;138(3):668–75. https://doi.org/10.1016/j.ygyno.2015.06.036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hibdon ES, Razumilava N, Keeley TM, Wong G, Solanki S, Shah YM, et al. Notch and mTOR signaling pathways promote human gastric cancer cell proliferation. Neoplasia. 2019;21(7):702–12. https://doi.org/10.1016/j.neo.2019.05.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Guerrero-Zotano A, Mayer IA, Arteaga CL. PI3K/AKT/mTOR: role in breast cancer progression, drug resistance, and treatment. Cancer Metastasis Rev. 2016;35(4):515–24. https://doi.org/10.1007/s10555-016-9637-x.

    Article  CAS  PubMed  Google Scholar 

  70. Engelman JA. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer. 2009;9(8):550–62. https://doi.org/10.1038/nrc2664.

    Article  CAS  PubMed  Google Scholar 

  71. Nicholson KM, Anderson NG. The protein kinase B/Akt signalling pathway in human malignancy. Cell Signal. 2002;14(5):381–95.

    Article  CAS  PubMed  Google Scholar 

  72. Qiu Y, Kung HJ. Signaling network of the Btk family kinases. Oncogene. 2000;19(49):5651–61. https://doi.org/10.1038/sj.onc.1203958.

    Article  CAS  PubMed  Google Scholar 

  73. Cain RJ, Ridley AJ. Phosphoinositide 3-kinases in cell migration. Biol Cell. 2009;101(1):13–29. https://doi.org/10.1042/bc20080079.

    Article  CAS  PubMed  Google Scholar 

  74. Lee JH, Liu R, Li J, Wang Y, Tan L, Li XJ, et al. EGFR-phosphorylated platelet isoform of phosphofructokinase 1 promotes PI3K activation. Mol Cell. 2018;70(2):197–210.e7. https://doi.org/10.1016/j.molcel.2018.03.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Novellasdemunt L, Tato I, Navarro-Sabate A, Ruiz-Meana M, Mendez-Lucas A, Perales JC, et al. Akt-dependent activation of the heart 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB2) isoenzyme by amino acids. J Biol Chem. 2013;288(15):10640–51. https://doi.org/10.1074/jbc.M113.455998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Melstrom LG, Salabat MR, Ding XZ, Milam BM, Strouch M, Pelling JC, et al. Apigenin inhibits the GLUT-1 glucose transporter and the phosphoinositide 3-kinase/Akt pathway in human pancreatic cancer cells. Pancreas. 2008;37(4):426–31. https://doi.org/10.1097/MPA.0b013e3181735ccb.

    Article  CAS  PubMed  Google Scholar 

  77. Samih N, Hovsepian S, Aouani A, Lombardo D, Fayet G. Glut-1 translocation in FRTL-5 thyroid cells: role of phosphatidylinositol 3-kinase and N-glycosylation. Endocrinology. 2000;141(11):4146–55. https://doi.org/10.1210/endo.141.11.7793.

    Article  CAS  PubMed  Google Scholar 

  78. Kang SS, Chun YK, Hur MH, Lee HK, Kim YJ, Hong SR, et al. Clinical significance of glucose transporter 1 (GLUT1) expression in human breast carcinoma. Jpn J Cancer Res. 2002;93(10):1123–8. https://doi.org/10.1111/j.1349-7006.2002.tb01214.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Garrido P, Moran J, Alonso A, Gonzalez S, Gonzalez C. 17beta-estradiol activates glucose uptake via GLUT4 translocation and PI3K/Akt signaling pathway in MCF-7 cells. Endocrinology. 2013;154(6):1979–89. https://doi.org/10.1210/en.2012-1558.

    Article  CAS  PubMed  Google Scholar 

  80. Liu Y, Wang R, Zhang L, Li J, Lou K, Shi B. The lipid metabolism gene FTO influences breast cancer cell energy metabolism via the PI3K/AKT signaling pathway. Oncol Lett. 2017;13(6):4685–90. https://doi.org/10.3892/ol.2017.6038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lopez-Knowles E, O'Toole SA, McNeil CM, Millar EK, Qiu MR, Crea P, et al. PI3K pathway activation in breast cancer is associated with the basal-like phenotype and cancer-specific mortality. Int J Cancer. 2010;126(5):1121–31. https://doi.org/10.1002/ijc.24831.

    Article  CAS  PubMed  Google Scholar 

  82. Castaneda CA, Cortes-Funes H, Gomez HL, Ciruelos EM. The phosphatidyl inositol 3-kinase/AKT signaling pathway in breast cancer. Cancer Metastasis Rev. 2010;29(4):751–9. https://doi.org/10.1007/s10555-010-9261-0.

    Article  CAS  PubMed  Google Scholar 

  83. Koboldt DC, Fulton RS, McLellan MD, Schmidt H, Kalicki-Veizer J, McMichael JF et al. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61–70. https://doi.org/10.1038/nature11412.

  84. Majewski IJ, Nuciforo P, Mittempergher L, Bosma AJ, Eidtmann H, Holmes E, et al. PIK3CA mutations are associated with decreased benefit to neoadjuvant human epidermal growth factor receptor 2-targeted therapies in breast cancer. J Clin Oncol. 2015;33(12):1334–9. https://doi.org/10.1200/jco.2014.55.2158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Li N, Miao Y, Shan Y, Liu B, Li Y, Zhao L, et al. MiR-106b and miR-93 regulate cell progression by suppression of PTEN via PI3K/Akt pathway in breast cancer. Cell Death Dis. 2017;8(5):e2796. https://doi.org/10.1038/cddis.2017.119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Miao Y, Zheng W, Li N, Su Z, Zhao L, Zhou H, et al. MicroRNA-130b targets PTEN to mediate drug resistance and proliferation of breast cancer cells via the PI3K/Akt signaling pathway. Sci Rep. 2017;7:41942. https://doi.org/10.1038/srep41942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zheng J, Zhang M, Zhang L, Ding X, Li W, Lu S. HSPC159 promotes proliferation and metastasis by inducing epithelial-mesenchymal transition and activating the PI3K/Akt pathway in breast cancer. Cancer Sci. 2018;109(7):2153–63. https://doi.org/10.1111/cas.13631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Li GY, Jung KH, Lee H, Son MK, Seo J, Hong SW, et al. A novel imidazopyridine derivative, HS-106, induces apoptosis of breast cancer cells and represses angiogenesis by targeting the PI3K/mTOR pathway. Cancer Lett. 2013;329(1):59–67. https://doi.org/10.1016/j.canlet.2012.10.013.

    Article  CAS  PubMed  Google Scholar 

  89. Wang C, Xu CX, Bu Y, Bottum KM, Tischkau SA. Beta-naphthoflavone (DB06732) mediates estrogen receptor-positive breast cancer cell cycle arrest through AhR-dependent regulation of PI3K/AKT and MAPK/ERK signaling. Carcinogenesis. 2014;35(3):703–13. https://doi.org/10.1093/carcin/bgt356.

    Article  CAS  PubMed  Google Scholar 

  90. Leung EY, Kim JE, Askarian-Amiri M, Joseph WR, McKeage MJ, Baguley BC. Hormone resistance in two MCF-7 breast cancer cell Lines is associated with reduced mTOR signaling, decreased glycolysis, and increased sensitivity to cytotoxic drugs. Front Oncol. 2014;4:221. https://doi.org/10.3389/fonc.2014.00221.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Vivanco I, Sawyers CL. The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer. 2002;2(7):489–501. https://doi.org/10.1038/nrc839.

    Article  CAS  PubMed  Google Scholar 

  92. Baretic D, Williams RL. The structural basis for mTOR function. Semin Cell Dev Biol. 2014;36:91–101. https://doi.org/10.1016/j.semcdb.2014.09.024.

    Article  CAS  PubMed  Google Scholar 

  93. Hara K, Maruki Y, Long X, Yoshino K, Oshiro N, Hidayat S, et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell. 2002;110(2):177–89.

    Article  CAS  PubMed  Google Scholar 

  94. Duvel K, Yecies JL, Menon S, Raman P, Lipovsky AI, Souza AL, et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell. 2010;39(2):171–83. https://doi.org/10.1016/j.molcel.2010.06.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Dibble CC, Manning BD. Signal integration by mTORC1 coordinates nutrient input with biosynthetic output. Nat Cell Biol. 2013;15(6):555–64. https://doi.org/10.1038/ncb2763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Shimobayashi M, Hall MN. Making new contacts: the mTOR network in metabolism and signalling crosstalk. Nat Rev Mol Cell Biol. 2014;15(3):155–62. https://doi.org/10.1038/nrm3757.

    Article  CAS  PubMed  Google Scholar 

  97. Poulain L, Sujobert P, Zylbersztejn F, Barreau S, Stuani L, Lambert M, et al. High mTORC1 activity drives glycolysis addiction and sensitivity to G6PD inhibition in acute myeloid leukemia cells. Leukemia. 2017;31(11):2326–35. https://doi.org/10.1038/leu.2017.81.

    Article  CAS  PubMed  Google Scholar 

  98. Cybulski N, Hall MN. TOR complex 2: a signaling pathway of its own. Trends Biochem Sci. 2009;34(12):620–7. https://doi.org/10.1016/j.tibs.2009.09.004.

    Article  CAS  PubMed  Google Scholar 

  99. Garcia-Martinez JM, Alessi DR. mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1). Biochem J. 2008;416(3):375–85. https://doi.org/10.1042/bj20081668.

    Article  CAS  PubMed  Google Scholar 

  100. Ikenoue T, Inoki K, Yang Q, Zhou X, Guan KL. Essential function of TORC2 in PKC and Akt turn motif phosphorylation, maturation and signalling. EMBO J. 2008;27(14):1919–31. https://doi.org/10.1038/emboj.2008.119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR, Erdjument-Bromage H, et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol. 2004;14(14):1296–302. https://doi.org/10.1016/j.cub.2004.06.054.

    Article  CAS  PubMed  Google Scholar 

  102. Manning BD, Cantley LC. AKT/PKB signaling: navigating downstream. Cell. 2007;129(7):1261–74. https://doi.org/10.1016/j.cell.2007.06.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Dang CV, Le A, Gao P. MYC-induced cancer cell energy metabolism and therapeutic opportunities. Clin Cancer Res. 2009;15(21):6479–83. https://doi.org/10.1158/1078-0432.ccr-09-0889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Masui K, Cavenee WK, Mischel PS. mTORC2 dictates Warburg effect and drug resistance. Cell Cycle. 2014;13(7):1053–4. https://doi.org/10.4161/cc.28377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Masui K, Tanaka K, Akhavan D, Babic I, Gini B, Matsutani T, et al. mTOR complex 2 controls glycolytic metabolism in glioblastoma through FoxO acetylation and upregulation of c-Myc. Cell Metab. 2013;18(5):726–39. https://doi.org/10.1016/j.cmet.2013.09.013.

    Article  CAS  PubMed  Google Scholar 

  106. Beg M, Abdullah N, Thowfeik FS, Altorki NK, McGraw TE. Distinct Akt phosphorylation states are required for insulin regulated Glut4 and Glut1-mediated glucose uptake. eLife. 2017. https://doi.og/10.7554/eLife.26896.

  107. Liu P, Gan W, Inuzuka H, Lazorchak AS, Gao D, Arojo O, et al. Sin1 phosphorylation impairs mTORC2 complex integrity and inhibits downstream Akt signalling to suppress tumorigenesis. Nat Cell Biol. 2013;15(11):1340–50. https://doi.org/10.1038/ncb2860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ouyang X, Han Y, Qu G, Li M, Wu N, Liu H, et al. Metabolic regulation of T cell development by Sin1-mTORC2 is mediated by pyruvate kinase M2. J Mol Cell Biol. 2019;11(2):93–106. https://doi.org/10.1093/jmcb/mjy065.

    Article  CAS  PubMed  Google Scholar 

  109. Panasyuk G, Espeillac C, Chauvin C, Pradelli LA, Horie Y, Suzuki A, et al. PPARgamma contributes to PKM2 and HK2 expression in fatty liver. Nat Commun. 2012;3:672. https://doi.org/10.1038/ncomms1667.

    Article  CAS  PubMed  Google Scholar 

  110. Hare SH, Harvey AJ. mTOR function and therapeutic targeting in breast cancer. Am J Cancer Res. 2017;7(3):383–404.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Viedma-Rodriguez R, Baiza-Gutman L, Salamanca-Gomez F, Diaz-Zaragoza M, Martinez-Hernandez G, Ruiz Esparza-Garrido R, et al. Mechanisms associated with resistance to tamoxifen in estrogen receptor-positive breast cancer (review). Oncol Rep. 2014;32(1):3–15. https://doi.org/10.3892/or.2014.3190.

    Article  CAS  PubMed  Google Scholar 

  112. Schettini F, Buono G, Cardalesi C, Desideri I, De Placido S, Del Mastro L. Hormone receptor/human epidermal growth factor receptor 2-positive breast cancer: Where we are now and where we are going. Cancer Treat Rev. 2016;46:20–6. https://doi.org/10.1016/j.ctrv.2016.03.012.

    Article  CAS  PubMed  Google Scholar 

  113. Margariti N, Fox SB, Bottini A, Generali D. "Overcoming breast cancer drug resistance with mTOR inhibitors". Could it be a myth or a real possibility in the short-term future? Breast Cancer Res Treat. 2011;128(3):599-606. https://doi.org/10.1007/s10549-010-0986-9.

  114. Singh N, Joshi R, Komurov K. HER2-mTOR signaling-driven breast cancer cells require ER-associated degradation to survive. Sci Signal. 2015;8(378):ra52. https://doi.org/10.1126/scisignal.aaa6922.

  115. Fouque A, Delalande O, Jean M, Castellano R, Josselin E, Malleter M, et al. A novel covalent mTOR inhibitor, DHM25, shows in vivo antitumor activity against triple-negative breast cancer cells. J Med Chem. 2015;58(16):6559–733. https://doi.org/10.1021/acs.jmedchem.5b00991.

    Article  CAS  PubMed  Google Scholar 

  116. Zhang H, Cohen AL, Krishnakumar S, Wapnir IL, Veeriah S, Deng G, et al. Patient-derived xenografts of triple-negative breast cancer reproduce molecular features of patient tumors and respond to mTOR inhibition. Breast Cancer Res. 2014;16(2):R36. https://doi.org/10.1186/bcr3640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Hardie DG, Ross FA, Hawley SA. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol. 2012;13(4):251–62. https://doi.org/10.1038/nrm3311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Hardie DG. AMPK–sensing energy while talking to other signaling pathways. Cell Metab. 2014;20(6):939–52. https://doi.org/10.1016/j.cmet.2014.09.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, Mair W, et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science. 2011;331(6016):456–61. https://doi.org/10.1126/science.1196371.

    Article  CAS  PubMed  Google Scholar 

  120. Jones RG, Plas DR, Kubek S, Buzzai M, Mu J, Xu Y, et al. AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell. 2005;18(3):283–93. https://doi.org/10.1016/j.molcel.2005.03.027.

    Article  CAS  PubMed  Google Scholar 

  121. Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control cell growth and survival. Cell. 2003;115(5):577–90.

    Article  CAS  PubMed  Google Scholar 

  122. Marsin AS, Bertrand L, Rider MH, Deprez J, Beauloye C, Vincent MF, et al. Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia. Curr Biol. 2000;10(20):1247–55.

    Article  CAS  PubMed  Google Scholar 

  123. Russell RR 3rd, Bergeron R, Shulman GI, Young LH. Translocation of myocardial GLUT-4 and increased glucose uptake through activation of AMPK by AICAR. Am J Physiol. 1999;277(2):H643–H649649. https://doi.org/10.1152/ajpheart.1999.277.2.H643.

    Article  CAS  PubMed  Google Scholar 

  124. Barnes K, Ingram JC, Porras OH, Barros LF, Hudson ER, Fryer LG, et al. Activation of GLUT1 by metabolic and osmotic stress: potential involvement of AMP-activated protein kinase (AMPK). J Cell Sci. 2002;115(Pt 11):2433–42.

    CAS  PubMed  Google Scholar 

  125. Castro V, Skowronska M, Lombardi J, He J, Seth N, Velichkovska M, et al. Occludin regulates glucose uptake and ATP production in pericytes by influencing AMP-activated protein kinase activity. J Cereb Blood Flow Metab. 2018;38(2):317–32. https://doi.org/10.1177/0271678x17720816.

    Article  CAS  PubMed  Google Scholar 

  126. Shaw RJ, Kosmatka M, Bardeesy N, Hurley RL, Witters LA, DePinho RA, et al. The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci USA. 2004;101(10):3329–35. https://doi.org/10.1073/pnas.0308061100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Cao W, Li J, Hao Q, Vadgama JV, Wu Y. AMP-activated protein kinase: a potential therapeutic target for triple-negative breast cancer. Breast Cancer Res. 2019;21(1):29. https://doi.org/10.1186/s13058-019-1107-2.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Huang X, Li X, Xie X, Ye F, Chen B, Song C, et al. High expressions of LDHA and AMPK as prognostic biomarkers for breast cancer. Breast. 2016;30:39–46. https://doi.org/10.1016/j.breast.2016.08.014.

    Article  PubMed  Google Scholar 

  129. Han F, Li CF, Cai Z, Zhang X, Jin G, Zhang WN, et al. The critical role of AMPK in driving Akt activation under stress, tumorigenesis and drug resistance. Nat Commun. 2018;9(1):4728. https://doi.org/10.1038/s41467-018-07188-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Saha M, Kumar S, Bukhari S, Balaji SA, Kumar P, Hindupur SK, et al. AMPK-Akt double-negative feedback loop in breast cancer cells regulates their adaptation to matrix deprivation. Can Res. 2018;78(6):1497–510. https://doi.org/10.1158/0008-5472.can-17-2090.

    Article  CAS  Google Scholar 

  131. Ng TL, Leprivier G, Robertson MD, Chow C, Martin MJ, Laderoute KR, et al. The AMPK stress response pathway mediates anoikis resistance through inhibition of mTOR and suppression of protein synthesis. Cell Death Differ. 2012;19(3):501–10. https://doi.org/10.1038/cdd.2011.119.

    Article  CAS  PubMed  Google Scholar 

  132. Montero JC, Esparis-Ogando A, Re-Louhau MF, Seoane S, Abad M, Calero R, et al. Active kinase profiling, genetic and pharmacological data define mTOR as an important common target in triple-negative breast cancer. Oncogene. 2014;33(2):148–56. https://doi.org/10.1038/onc.2012.572.

    Article  CAS  PubMed  Google Scholar 

  133. Furst R. Narciclasine—an amaryllidaceae alkaloid with potent antitumor and anti-inflammatory properties. Planta Med. 2016;82(16):1389–94. https://doi.org/10.1055/s-0042-115034.

    Article  CAS  PubMed  Google Scholar 

  134. Cao C, Huang W, Zhang N, Wu F, Xu T, Pan X, et al. Narciclasine induces autophagy-dependent apoptosis in triple-negative breast cancer cells by regulating the AMPK-ULK1 axis. Cell Prolif. 2018;51(6):e12518. https://doi.org/10.1111/cpr.12518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Cai H, Zhang Y, Han TK, Everett RS, Thakker DR. Cation-selective transporters are critical to the AMPK-mediated antiproliferative effects of metformin in human breast cancer cells. Int J Cancer. 2016;138(9):2281–92. https://doi.org/10.1002/ijc.29965.

    Article  CAS  PubMed  Google Scholar 

  136. Woo YM, Shin Y, Lee EJ, Lee S, Jeong SH, Kong HK, et al. Inhibition of aerobic glycolysis represses Akt/mTOR/HIF-1alpha axis and restores tamoxifen sensitivity in antiestrogen-resistant breast cancer cells. PLoS ONE. 2015;10(7):e0132285. https://doi.org/10.1371/journal.pone.0132285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Farrell AS, Sears RC. MYC degradation. Cold Spring Harbor perspectives in medicine. 2014. https://doi.org/10.1101/cshperspect.a014365.

  138. Sun XX, He X, Yin L, Komada M, Sears RC, Dai MS. The nucleolar ubiquitin-specific protease USP36 deubiquitinates and stabilizes c-Myc. Proc Natl Acad Sci USA. 2015;112(12):3734–9. https://doi.org/10.1073/pnas.1411713112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. van Riggelen J, Yetil A, Felsher DW. MYC as a regulator of ribosome biogenesis and protein synthesis. Nat Rev Cancer. 2010;10(4):301–9. https://doi.org/10.1038/nrc2819.

    Article  CAS  PubMed  Google Scholar 

  140. Pelengaris S, Khan M, Evan G. c-MYC: more than just a matter of life and death. Nat Rev Cancer. 2002;2(10):764–76. https://doi.org/10.1038/nrc904.

    Article  CAS  PubMed  Google Scholar 

  141. Hsieh AL, Walton ZE, Altman BJ, Stine ZE, Dang CV. MYC and metabolism on the path to cancer. Semin Cell Dev Biol. 2015;43:11–21. https://doi.org/10.1016/j.semcdb.2015.08.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Bott AJ, Peng IC, Fan Y, Faubert B, Zhao L, Li J, et al. Oncogenic Myc induces expression of glutamine synthetase through promoter demethylation. Cell Metab. 2015;22(6):1068–77. https://doi.org/10.1016/j.cmet.2015.09.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Butt AJ, Sergio CM, Inman CK, Anderson LR, McNeil CM, Russell AJ, et al. The estrogen and c-Myc target gene HSPC111 is over-expressed in breast cancer and associated with poor patient outcome. Breast Cancer Res. 2008;10(2):R28. https://doi.org/10.1186/bcr1985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Jain S, Wang X, Chang CC, Ibarra-Drendall C, Wang H, Zhang Q, et al. Src inhibition blocks c-Myc translation and glucose metabolism to prevent the development of breast cancer. Can Res. 2015;75(22):4863–75. https://doi.org/10.1158/0008-5472.can-14-2345.

    Article  CAS  Google Scholar 

  145. Vousden KH, Lane DP. p53 in health and disease. Nat Rev Mol Cell Biol. 2007;8(4):275–83. https://doi.org/10.1038/nrm2147.

    Article  CAS  PubMed  Google Scholar 

  146. Green DR, Chipuk JE. p53 and metabolism: inside the TIGAR. Cell. 2006;126(1):30–2. https://doi.org/10.1016/j.cell.2006.06.032.

    Article  CAS  PubMed  Google Scholar 

  147. Vousden KH, Ryan KM. p53 and metabolism. Nat Rev Cancer. 2009;9(10):691–700. https://doi.org/10.1038/nrc2715.

    Article  CAS  PubMed  Google Scholar 

  148. Kawauchi K, Araki K, Tobiume K, Tanaka N. p53 regulates glucose metabolism through an IKK-NF-kappaB pathway and inhibits cell transformation. Nat Cell Biol. 2008;10(5):611–8. https://doi.org/10.1038/ncb1724.

    Article  CAS  PubMed  Google Scholar 

  149. Zhao Y, Coloff JL, Ferguson EC, Jacobs SR, Cui K, Rathmell JC. Glucose metabolism attenuates p53 and Puma-dependent cell death upon growth factor deprivation. J Biol Chem. 2008;283(52):36344–53. https://doi.org/10.1074/jbc.M803580200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Budanov AV, Karin M. p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell. 2008;134(3):451–60. https://doi.org/10.1016/j.cell.2008.06.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Feng Z, Zhang H, Levine AJ, Jin S. The coordinate regulation of the p53 and mTOR pathways in cells. Proc Natl Acad Sci USA. 2005;102(23):8204–9. https://doi.org/10.1073/pnas.0502857102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Crighton D, Wilkinson S, O'Prey J, Syed N, Smith P, Harrison PR, et al. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell. 2006;126(1):121–34. https://doi.org/10.1016/j.cell.2006.05.034.

    Article  CAS  PubMed  Google Scholar 

  153. Liu W, Ip MM, Podgorsak MB, Das GM. Disruption of estrogen receptor alpha-p53 interaction in breast tumors: a novel mechanism underlying the anti-tumor effect of radiation therapy. Breast Cancer Res Treat. 2009;115(1):43–50. https://doi.org/10.1007/s10549-008-0044-z.

    Article  CAS  PubMed  Google Scholar 

  154. Liu W, Konduri SD, Bansal S, Nayak BK, Rajasekaran SA, Karuppayil SM, et al. Estrogen receptor-alpha binds p53 tumor suppressor protein directly and represses its function. J Biol Chem. 2006;281(15):9837–40. https://doi.org/10.1074/jbc.C600001200.

    Article  CAS  PubMed  Google Scholar 

  155. Berger CE, Qian Y, Liu G, Chen H, Chen X. p53, a target of estrogen receptor (ER) alpha, modulates DNA damage-induced growth suppression in ER-positive breast cancer cells. J Biol Chem. 2012;287(36):30117–27. https://doi.org/10.1074/jbc.M112.367326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Yang H, Yu S, Wang W, Li X, Hou Y, Liu Z, et al. SHARPIN facilitates p53 degradation in breast cancer cells. Neoplasia. 2017;19(2):84–92. https://doi.org/10.1016/j.neo.2016.12.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Sharma S, Nagpal N, Ghosh PC, Kulshreshtha R. P53-miR-191-SOX4 regulatory loop affects apoptosis in breast cancer. RNA. 2017;23(8):1237–46. https://doi.org/10.1261/rna.060657.117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Miller LD, Smeds J, George J, Vega VB, Vergara L, Ploner A, et al. An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival. Proc Natl Acad Sci USA. 2005;102(38):13550–5. https://doi.org/10.1073/pnas.0506230102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Bailey ST, Shin H, Westerling T, Liu XS, Brown M. Estrogen receptor prevents p53-dependent apoptosis in breast cancer. Proc Natl Acad Sci USA. 2012;109(44):18060–5. https://doi.org/10.1073/pnas.1018858109.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Synnott NC, Bauer MR, Madden S, Murray A, Klinger R, O'Donovan N, et al. Mutant p53 as a therapeutic target for the treatment of triple-negative breast cancer: preclinical investigation with the anti-p53 drug, PK11007. Cancer Lett. 2018;414:99–106. https://doi.org/10.1016/j.canlet.2017.09.053.

    Article  CAS  PubMed  Google Scholar 

  161. Girardini JE, Napoli M, Piazza S, Rustighi A, Marotta C, Radaelli E, et al. A Pin1/mutant p53 axis promotes aggressiveness in breast cancer. Cancer Cell. 2011;20(1):79–91. https://doi.org/10.1016/j.ccr.2011.06.004.

    Article  CAS  PubMed  Google Scholar 

  162. Bergh J, Norberg T, Sjogren S, Lindgren A, Holmberg L. Complete sequencing of the p53 gene provides prognostic information in breast cancer patients, particularly in relation to adjuvant systemic therapy and radiotherapy. Nat Med. 1995;1(10):1029–34.

    Article  CAS  PubMed  Google Scholar 

  163. Sankpal NV, Willman MW, Fleming TP, Mayfield JD, Gillanders WE. Transcriptional repression of epithelial cell adhesion molecule contributes to p53 control of breast cancer invasion. Can Res. 2009;69(3):753–7. https://doi.org/10.1158/0008-5472.can-08-2708.

    Article  CAS  Google Scholar 

  164. Wang GL, Jiang BH, Rue EA, Semenza GL. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA. 1995;92(12):5510–4. https://doi.org/10.1073/pnas.92.12.5510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Masoud GN, Li W. HIF-1alpha pathway: role, regulation and intervention for cancer therapy. Acta Pharm Sin Bs. 2015;5(5):378–89. https://doi.org/10.1016/j.apsb.2015.05.007.

    Article  Google Scholar 

  166. Denko NC. Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer. 2008;8(9):705–13. https://doi.org/10.1038/nrc2468.

    Article  CAS  PubMed  Google Scholar 

  167. Zhang H, Gao P, Fukuda R, Kumar G, Krishnamachary B, Zeller KI, et al. HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity. Cancer Cell. 2007;11(5):407–20. https://doi.org/10.1016/j.ccr.2007.04.001.

    Article  CAS  PubMed  Google Scholar 

  168. Kimbro KS, Simons JW. Hypoxia-inducible factor-1 in human breast and prostate cancer. Endocr Relat Cancer. 2006;13(3):739–49. https://doi.org/10.1677/erc.1.00728.

    Article  CAS  PubMed  Google Scholar 

  169. Trastour C, Benizri E, Ettore F, Ramaioli A, Chamorey E, Pouyssegur J, et al. HIF-1alpha and CA IX staining in invasive breast carcinomas: prognosis and treatment outcome. Int J Cancer. 2007;120(7):1451–8. https://doi.org/10.1002/ijc.22436.

    Article  CAS  PubMed  Google Scholar 

  170. Schindl M, Schoppmann SF, Samonigg H, Hausmaninger H, Kwasny W, Gnant M, et al. Overexpression of hypoxia-inducible factor 1alpha is associated with an unfavorable prognosis in lymph node-positive breast cancer. Clin Cancer Res. 2002;8(6):1831–7.

    CAS  PubMed  Google Scholar 

  171. Yan M, Rayoo M, Takano EA, Fox SB. BRCA1 tumours correlate with a HIF-1alpha phenotype and have a poor prognosis through modulation of hydroxylase enzyme profile expression. Br J Cancer. 2009;101(7):1168–74. https://doi.org/10.1038/sj.bjc.6605287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Yang J, AlTahan A, Jones DT, Buffa FM, Bridges E, Interiano RB, et al. Estrogen receptor-alpha directly regulates the hypoxia-inducible factor 1 pathway associated with antiestrogen response in breast cancer. Proc Natl Acad Sci USA. 2015;112(49):15172–7. https://doi.org/10.1073/pnas.1422015112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Konecny GE, Meng YG, Untch M, Wang HJ, Bauerfeind I, Epstein M, et al. Association between HER-2/neu and vascular endothelial growth factor expression predicts clinical outcome in primary breast cancer patients. Clin Cancer Res. 2004;10(5):1706–16.

    Article  CAS  PubMed  Google Scholar 

  174. Zhang H, Lu H, Xiang L, Bullen JW, Zhang C, Samanta D, et al. HIF-1 regulates CD47 expression in breast cancer cells to promote evasion of phagocytosis and maintenance of cancer stem cells. Proc Natl Acad Sci USA. 2015;112(45):E6215–E62236223. https://doi.org/10.1073/pnas.1520032112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat Rev Cancer. 2004;4(11):891–9. https://doi.org/10.1038/nrc1478.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from the Union Project of Luzhou City and the Southwest Medical University (Nos. 14JC0144, 2013LZLY-J40).

Author information

Authors and Affiliations

Authors

Contributions

JBW, SZF and JJ were responsible for review of the literature. ZXW wrote the manuscript. QJZ drew the figures. JBW, SZF and JJ designed the study and contributed to the valuable discussion and revision of the manuscript.

Corresponding authors

Correspondence to S. Fu or J. Jin.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study, informed consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Wu, J., Zhao, Q. et al. Emerging roles of aerobic glycolysis in breast cancer. Clin Transl Oncol 22, 631–646 (2020). https://doi.org/10.1007/s12094-019-02187-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-019-02187-8

Keywords

Navigation