Skip to main content
Log in

Composite temporal strategies in pathogen evolution: balancing invasion and persistence

  • ORIGINAL PAPER
  • Published:
Theoretical Ecology Aims and scope Submit manuscript

Abstract

There is ongoing interest in the conditions that favor the evolution of acute, highly transmissible infections in contrast to chronic ones. Earlier studies typically consider the evolution of a trait that is constant over the lifetime of an infection. However, for many pathogens, such traits can vary over this course. Here, we address the evolution of temporal patterns in limited host population sizes, where a trade-off between invasion and persistence can arise. This is of particular relevance to questions on the evolution of acuteness and chronicity. We ask whether population dynamics of transmission at the between-host level could lead pathogen adaptation to favor temporal strategies during the course of infection. To do this, we consider an infection to be composed of multiple stages, allowing each of these to evolve independently under a transmission–duration trade-off. We only consider selection taking place on the between-host level and examine the balance of invasion and persistence (i.e., maximizing replication vs. minimizing vulnerability to extinction), using several fitness-related measures. We find that a composite strategy that is ordered in time can confer higher fitness than any single, constant, strategy. We discuss the relevance of these results for the ordered expression of var genes in Plasmodium falciparum, as well as for infections that characteristically have several stages as in some bacterial pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alizon S (2008) Transmission–recovery trade-offs to study parasite evolution. Am Nat 172:E113–E121

    Article  PubMed  Google Scholar 

  • Alizon S et al (2009) Virulence evolution and the trade-off hypothesis: history, current state of affairs and the future. J Evol Biol 22:245–259

    Article  PubMed  CAS  Google Scholar 

  • Anderson H, Britton T (2000) Stochastic epidemics in dynamic populations: quasi-stationarity and extinction. J Math Biol 41:559–580

    Article  PubMed  CAS  Google Scholar 

  • Anderson RM, May RM (1979) Population biology of infectious diseases. Nature 280:361–367

    Article  PubMed  CAS  Google Scholar 

  • Anderson H, May RM (1981) The population-dynamics of micro-parasites and their invertebrate hosts. Philos Trans R Soc Lond 1981(291):451–524

    Article  Google Scholar 

  • Anderson RM, May RM (1982) Coevolution of hosts and parasites. Parasitology 85:411–426

    Article  PubMed  Google Scholar 

  • Artur Scherf A et al (2008) Antigenic variation in Plasmodium falciparum. Annu Rev Microbiol 62:445–470

    Article  PubMed  Google Scholar 

  • Bartlett MS (1956) Measles periodicity and community size. J R Stat Soc 120:48–60

    Google Scholar 

  • Bartlett MS (1957) Measles periodicity and community size. J R Stat Soc Ser A 1957:48–60

    Article  Google Scholar 

  • Bjørnstad ON, Harvill ET (2005) Evolution and emergence of Bordetella in humans. Trends Microbiol 13(8):355–359

    Article  PubMed  Google Scholar 

  • Boerlijst MC, van Ballegooijen WM (2010) Spatial pattern switching enables cyclic evolution in spatial epidemics. PLoS Comput Biol 6(12):e1001030

    Article  PubMed  PubMed Central  Google Scholar 

  • Bremermann HJ, Pickering J (1983) A game-theoretical model of parasite virulence. J Theor Biol 100:411–426

    Article  PubMed  CAS  Google Scholar 

  • Bull JJ (1994) Virulence. Evolution 48:1423–1437

    Article  Google Scholar 

  • Bull PC et al (2000) Plasmodium falciparum-infected erythrocytes: agglutination by diverse Kenyan plasma is associated with severe disease and young host age. J Infect Dis 182:252–259

    Article  PubMed  CAS  Google Scholar 

  • Bull PC et al (2005) Plasmodium falciparum variant surface antigen expression patterns during malaria. PLoS Pathog 1(3)

  • CDC (2011) Epidemiology and prevention of vaccine-preventable diseases, The Pink Book: Course Textbook. CDC, Atlanta

    Google Scholar 

  • Day T (2001) Parasite transmission modes and the evolution of virulence. Evolution 55:2389–2400

    Article  PubMed  CAS  Google Scholar 

  • Day T (2003) Virulence evolution and the timing of disease life-history events. Trends Ecol Evol 18:113–118

    Article  Google Scholar 

  • Day T et al (2011) Bridging scales in the evolution of infectious disease life histories: theory. Evolution 65(12):3448–3461. doi:10.1111/j.1558-5646.2011.01394.x

    Article  PubMed  Google Scholar 

  • Dietz K (1975) Transmission and control of arbovirus diseases. In: Ludwig D, Cooke KL (eds) Epidemiology. Society for the Industrial and Applied Mathematics, Philadelphia

    Google Scholar 

  • Ebert D, Herre EA (1996) The evolution of parasitic diseases. Parasitol Today 12:96–100

    Article  PubMed  CAS  Google Scholar 

  • Ewald PW (1983) Host–parasite relations, vectors, and the evolution of disease severity. Annu Rev Ecol Evol Syst 14:465–485

    Article  Google Scholar 

  • Frank SA (1996) Models of parasite virulence. Q Rev Biol 71:37–38

    Article  PubMed  CAS  Google Scholar 

  • Gardner MJ et al (2002) Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419:498–511

    Article  PubMed  CAS  Google Scholar 

  • Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81:2340–2361

    Article  CAS  Google Scholar 

  • Grenfell BT (2001) Dynamics and epidemiological impact of microparasites. In: Irving WL, Smith G, McCauley JW, Rowlands DJ (eds) New challenges to health: the threat of virus infection. Cambridge University Press, Cambridge, pp 33–52

    Chapter  Google Scholar 

  • Kaestli M et al (2006) Virulence of malaria is associated with differential expression of Plasmodium falciparum var gene subgroups in a case-control study. J Infect Dis 193:1567–1574

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Keeling MJ, Grenfell BT (1997) Disease extinction and community size: modeling the persistence of measles. Science 275:65–67

    Article  PubMed  CAS  Google Scholar 

  • Keeling MJ, Rohani P (2008) Modeling infectious diseases in humans and animals. Princeton University Press, Princeton

    Google Scholar 

  • King AA et al (2009) Evolution of acute infections and the invasion–persistence trade-off. Am Nat 173:446–455

    Article  PubMed  PubMed Central  Google Scholar 

  • Lenski RE, May RM (1994) The evolution of virulence in parasites and pathogens: reconciliation between two competing hypotheses. J Theor Biol 169:253–265

    Article  PubMed  CAS  Google Scholar 

  • Lipsitch M et al (1995) The population dynamics of vertically and horizontally transmitted parasites. Proc Roy Soc B 260:321–327

    Article  CAS  Google Scholar 

  • Massad E (1987) Transmission rates and the evolution of pathogenicity. Evolution 41:1127–1130

    Article  Google Scholar 

  • Mideo N et al (2008) Linking within- and between-host dynamics in the evolutionary epidemiology of infectious diseases. Trends Ecol Evol 23:511–517

    Article  PubMed  Google Scholar 

  • Mideo N et al (2011) Bridging scales in the evolution of infectious disease life histories: application. Evolution 65:3298–3310. doi:10.1111/j.1558-5646.2011.01382.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Miller LH et al (2002) The pathogenic basis of malaria. Nature 415:673–679

    Article  PubMed  CAS  Google Scholar 

  • Nasell I (1999) On the time to extinction in recurrent epidemics. J R Stat Soc Ser B 61:309–330

    Article  Google Scholar 

  • Nasell I (2005) A new look at the critical community size for childhood infections. Theor Popul Biol 67:203–216

    Article  PubMed  Google Scholar 

  • Peters J et al (2002) High diversity and rapid changeover of expressed var genes during the acute phase of Plasmodium falciparum infections in human volunteers. PNAS 99(16):10689–10694

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Read AF (1994) The evolution of virulence. Trends Microbiol 2:73–76

    Article  PubMed  CAS  Google Scholar 

  • Recker M et al (2004) Transient cross-reactive immune responses can orchestrate antigenic variation in malaria. Nature 429:555–558

    Article  PubMed  CAS  Google Scholar 

  • Recker M et al (2011) Antigenic variation in Plasmodium falciparum malaria involves a highly structured switching pattern. PLoS Pathog 7:e1001306

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sasaki A, Iwasa Y (1991) Optimal growth schedule of pathogens within a host: switching between lytic ad latent cycles. Theor Popul Biol 39:201–239

    Article  PubMed  CAS  Google Scholar 

  • Severins M et al (2012) How selection forces dictate the variant surface antigens used by malaria parasites. J R Soc Interface 9:246–260

    Article  PubMed  PubMed Central  Google Scholar 

  • Taylor PD et al (2006) The evolutionary consequences of plasticity in host–pathogen interactions. Theor Popul Biol 69:323–331

    Article  PubMed  Google Scholar 

  • van Noort SP et al (2010) Immune selection and within-host competition can structure the repertoire of variant surface antigens in Plasmodium falciparum—a mathematical model. PLoS ONE 5:e9778

    Article  PubMed  PubMed Central  Google Scholar 

  • Wallinga J, Lipsitch M (2007) How generation intervals shape the relationship between growth rates and reproductive numbers. Proc R Soc B Biol Sci 274(1609):599–604. doi:10.1098/rspb.2006.3754

    Article  CAS  Google Scholar 

  • Warimwe GM et al (2009) Plasmodium falciparum var gene expression is modified by host immunity. PNAS 106(51):21801–21806. doi:10.1073/pnas.0907590106

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Weiss RA (2002) Virulence and pathogenesis. Trends Microbiol 10(7):314–318

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

MP is a Howard Hughes Medical Investigator.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yael Artzy-Randrup.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 2.95 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Artzy-Randrup, Y., Pascual, M. Composite temporal strategies in pathogen evolution: balancing invasion and persistence. Theor Ecol 7, 325–334 (2014). https://doi.org/10.1007/s12080-014-0221-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12080-014-0221-0

Keywords

Navigation