Skip to main content
Log in

Information transmission in microbial and fungal communication: from classical to quantum

  • Bits and Bytes
  • Published:
Journal of Cell Communication and Signaling Aims and scope

Abstract

Microbes have their own communication systems. Secretion and reception of chemical signaling molecules and ion-channels mediated electrical signaling mechanism are yet observed two special ways of information transmission in microbial community. In this article, we address the aspects of various crucial machineries which set the backbone of microbial cell-to-cell communication process such as quorum sensing mechanism (bacterial and fungal), quorum sensing regulated biofilm formation, gene expression, virulence, swarming, quorum quenching, role of noise in quorum sensing, mathematical models (therapy model, evolutionary model, molecular mechanism model and many more), synthetic bacterial communication, bacterial ion-channels, bacterial nanowires and electrical communication. In particular, we highlight bacterial collective behavior with classical and quantum mechanical approaches (including quantum information). Moreover, we shed a new light to introduce the concept of quantum synthetic biology and possible cellular quantum Turing test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Albuquerque P, Casadevall A (2012) Quorum sensing in fungi – a review. Med Mycol 50(4):337–345. https://doi.org/10.3109/13693786.2011.652201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anand R, Rai N, Thattai M (2013) Interactions among quorum sensing inhibitors. PLoS One 8(4):e62254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anguige K, King JR, Ward JP (2005) Modelling antibiotic- and anti-quorum sensing treatment of a spatially-structured Pseudomonas aeruginosa population. J Math Biol 51(5):557–594. https://doi.org/10.1007/s00285-005-0316-8

  • Anguige K, King JR, Ward JP, Williams P (2004) Mathematical modelling of therapies targeted at bacterial quorum sensing. Math Biosci 192(1):39–83. https://doi.org/10.1016/j.mbs.2004.06.008

    Article  CAS  PubMed  Google Scholar 

  • Balagaddé FK, Song H, Ozaki J, Collins CH, Barnet M, Arnold FH, Quake SR, You L (2008) A synthetic Escherichia coli predator–prey ecosystem. Mol Syst Biol 4(1):187

    PubMed  PubMed Central  Google Scholar 

  • Barrios AFG, Achenie LE (2010) Escherichia coli autoinducer-2 uptake network does not display hysteretic behavior but AI-2 synthesis rate controls transient bifurcation. Biosystems 99(1):17–26

    Article  CAS  Google Scholar 

  • Barrios AFG, Covo V, Medina LM, Vives-Florez M, Achenie L (2009) Quorum quenching analysis in Pseudomonas aeruginosa and Escherichia coli: network topology and inhibition mechanism effect on the optimized inhibitor dose. Bioprocess Biosyst Eng 32(4):545–556

    Article  CAS  PubMed  Google Scholar 

  • Bashor CJ, Horwitz AA, Peisajovich SG, Lim WA (2010) Rewiring cells: synthetic biology as a tool to interrogate the organizational principles of living systems. Annu Rev Biophys 39:515–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basu S, Gerchman Y, Collins CH, Arnold FH, Weiss R (2005) A synthetic multicellular system for programmed pattern formation. Nature 434(7037):1130–1134

    Article  CAS  PubMed  Google Scholar 

  • Baym M, Lieberman TD, Kelsic ED, Chait R, Gross R, Yelin I, Kishony R (2016) Spatiotemporal microbial evolution on antibiotic landscapes. Science 353(6304):1147–1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beagle SD, Lockles SW (2015) Electical signaling goes bacterial. Nature 527

  • Beckmann BE, Knoester DB, Connelly BD, Waters CM, McKinley PK (2012) Evolution of resistance to quorum quenching in digital organisms. Art&Life 18(3):291–310

    Google Scholar 

  • Berneche S, Roux B (2001) Energetics of ion conduction through the K+ channel. Nature 414(6859):73

    Article  CAS  PubMed  Google Scholar 

  • Bernroider G, Roy S (2005) Quantum entanglement of K + ions, multiple channel states, and the role of noise in the brain. SPIE 5841:205–213

    Google Scholar 

  • Brenner K, Karig DK, Weiss R, Arnold FH (2007) Engineered bidirectional communication mediates a consensus in a microbial biofilm consortium. Proc Natl Acad Sci 104(44):17300–17304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bressloff PC (2016) Ultrasensitivity and noise amplification in a model of V. harveyi quorum sensing, Physical Review E. 93(6):062418

  • Brown SP (1999) Cooperation and conflict in host-manipulating parasites. Proc R Soc B 266:1899–1899. https://doi.org/10.1098/rspb.1999.0864

    Article  PubMed Central  Google Scholar 

  • Brown SP, Johnstone RA (2001) Cooperation in the dark: signalling and collective action in quorum-sensing bacteria. Proc R Soc B 268:961–965. https://doi.org/10.1098/rspb.2001.1609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cárcamo-Oyarce G, Lumjiaktase P, Kümmerli R, Eberl L (2015) Quorum sensing triggers the stochastic escape of individual cells from Pseudomonas putida biofilms. Nat Commun 6:5945

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen GQ, Cui C, Mayer ML, Gouaux E (1999) Functional characterization of a potassium-selective prokaryotic glutamate receptor. Nature 402(6763):817–821

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Fink GR (2006) Feedback control of morphogenesis in fungi by aromatic alcohols. Genes Dev 20(9):1150–1161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Fujita M, Feng Q, Clardy J, Fink GR (2004) Tyrosol is a quorum-sensing molecule in Candida albicans.Proceedings of the. National academy of Sciences of the United States of America 101(14):5048–5052

    Article  CAS  Google Scholar 

  • Chen Y, Kim JK, Hirning AJ, Josić K, Bennett MR (2015) Emergent genetic oscillations in a synthetic microbial consortium. Science 349(6251):986–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chopp DL, Kirisits MJ, Moran B, Parsek MR (2002) A mathematical model of quorum sensing in a growing bacterial biofilm. J Ind Microbiol Biotechnol 29(6):339–346

    Article  CAS  PubMed  Google Scholar 

  • Chopp DL, Kirisits MJ, Moran B, Parsek MR (2003) The dependence of quorum sensing on the depth of a growing biofilm. Bull Math Biol 65(6):1053–1079

    Article  CAS  PubMed  Google Scholar 

  • Cox CD, Peterson GD, Allen MS, Lancaster JM, McCollum JM, Austin D, Yan L, Sayler GS, Simpson ML (2003) Analysis of noise in quorum sensing. OMICS A Journal of Integrative Biology 7(3):317–334

    Article  CAS  PubMed  Google Scholar 

  • Czárán T, Hoekstra RF (2009) Microbial communication, cooperation and cheating: quorum sensing drives the evolution of cooperation in bacteria. PLoS One 4(8):e6655

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Danino T, Mondragón-Palomino O, Tsimring L, Hasty J (2010) A synchronized quorum of genetic clocks. Nature 463(7279):326–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Datla US, Mather WH, Chen S, Shoultz IW, Täuber UC, Jones CN, Butzin NC (2017) The spatiotemporal system dynamics of acquired resistance in an engineered microecology. Sci Rep 7(1):16071

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280(5361):295–298

    Article  CAS  PubMed  Google Scholar 

  • Deutsch D (1985) Quantum theory, the Church–Turing principle and the universal quantum computer. Proceedings of the Royal Society A 400(1818):97–117. https://doi.org/10.1098/rspa.1985.0070

  • Dilanji GE, Langebrake JB, De Leenheer P, Hagen SJ (2012) Quorum activation at a distance: spatiotemporal patterns of gene regulation from diffusion of an autoinducer signal. J Am Chem Soc 134(12):5618–5626

    Article  CAS  PubMed  Google Scholar 

  • Dockery JD, Keener JP (2001) A mathematical model for quorum sensing in Pseudomonas aeruginosa. Bull Math Biol 63(1):95–116

    Article  CAS  PubMed  Google Scholar 

  • Doyle DA, Cabral JM, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280(5360):69–77

    Article  CAS  PubMed  Google Scholar 

  • Dutzler R, Campbell EB, Cadene M, Chait BT, MacKinnon R (2002) X-ray structure of a ClC chloride channel at 3.0 Å reveals the molecular basis of anion selectivity. Nature 415(6869):287–294

    Article  CAS  PubMed  Google Scholar 

  • Eberl HJ, Parker DF, Van Loosdrecht M (2001) A new deterministic spatio-temporal continuum model for biofilm development. Computational and Mathematical Methods in Medicine 3(3):161–175

    Google Scholar 

  • El-Naggar MY, Wanger G, Leung KM, Yuzvinsky TD, Southam G, Yang J, Lau WM, Nealson KH, Gorby YA (2010) Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1. Proc Natl Acad Sci 107(42):18127–18131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elowitz MB, Leibler S (2000) A synthetic oscillatory network of transcriptional regulators. Nature 403(6767):335–338

    Article  CAS  PubMed  Google Scholar 

  • Emerenini BO, Hense BA, Kuttler C, Eberl HJ (2015) A mathematical model of quorum sensing induced biofilm detachment. PLoS One 10(7):e0132385

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Emerenini BO, Sonner S, Eberl HJ (2017) Mathematical analysis of a quorum sensing induced biofilm dispersal model and numerical simulation of hollowing effects.Mathematical. Biosciences & Engineering 14(3):625–653

    Google Scholar 

  • Endy D (2005) Foundations for engineering biology. Nature 438(7067):449–453

    Article  CAS  PubMed  Google Scholar 

  • Fagerlind MG, Nilsson P, Harlén M, Karlsson S, Rice SA, Kjelleberg S (2005) Modeling the effect of acylated homoserine lactone antagonists in Pseudomonas aeruginosa. Biosystems 80(2):201–213

    Article  CAS  PubMed  Google Scholar 

  • Fagerlind MG, Rice SA, Nilsson P, Harlén M, James S, Charlton T, Kjelleberg S (2003) The role of regulators in the expression of quorum-sensing signals in Pseudomonas aeruginosa. J Mol Microbiol Biotechnol 6(2):88–100

    Article  CAS  PubMed  Google Scholar 

  • Fekete A, Kuttler C, Rothballer M, Hense BA, Fischer D, Buddrus-Schiemann K, Lucio M, Müller J, Schmitt-Kopplin P, Hartmann A (2010) Dynamic regulation of n-acyl-homoserine lactone production and degradation in Pseudomonas putida ISOF. FEMS Microbiol Ecol 72:22–34. https://doi.org/10.1111/j.1574-6941.2009.00828.x

    Article  CAS  PubMed  Google Scholar 

  • Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S (2016) Biofilms: an emergent form of bacterial life. Nat Rev Microbiol 14(9):563–575

    Article  CAS  PubMed  Google Scholar 

  • Friman VP, Diggle SP, Buckling A (2013) Protist predation can favour cooperation within bacterial species. Biol Lett 9(5):20130548

    Article  PubMed  PubMed Central  Google Scholar 

  • Fuqua WC, Winans SC, Greenberg EP (1994) Quorum sensing in bacte- ria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176:269–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gahlmann A, Moerner WE (2014) Exploring bacterial cell biology with single-molecule tracking and super-resolution imaging. Nat Rev Microbiol 12(1):9–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • García-Aljaro C, Melado-Rovira S, Milton DL, Blanch AR (2012) Quorum-sensing regulates biofilm formation in Vibrio scophthalmi. BMC Microbiol 12(1):287

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gardner TS, Cantor CR, Collins JJ (2000) Construction of a genetic toggle switch in Escherichia coli. Nature 403(6767):339–342

    Article  CAS  PubMed  Google Scholar 

  • Goryachev AB, Toh DJ, Lee T (2006) Systems analysis of a quorum sensing network: design constraints imposed by the functional requirements, network topology and kinetic constants. Biosystems 83(2-3):178–187

    Article  CAS  PubMed  Google Scholar 

  • Gray KM, Passador L, Iglewski BH, Greenberg EP (1994) Interchangeability and specificity of components from the quorum-sensing regulatory systems of Vibrio fischeri and Pseudomonas aeruginosa. J Bacteriol 176:3076–3080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gustafsson E, Nilsson P, Karlsson S, Arvidson S (2004) Characterizing the dynamics of the quorum-sensing system in Staphylococcus aureus. J Mol Microbiol Biotechnol 8(4):232–242

    Article  PubMed  CAS  Google Scholar 

  • Haseltine EL, Arnold FH (2008) Implications of rewiring bacterial quorum sensing. Appl Environ Microbiol 74(2):437–445

    Article  CAS  PubMed  Google Scholar 

  • Hense BA, Schuster M (2015) Core principles of bacterial autoinducer systems. Microbiol Mol Biol Rev 79(1):153–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117(4):500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hornby JM, Jacobitz-Kizzier SM, McNeel DJ, Jensen EC, Treves DS, Nickerson KW (2004) Inoculum size effect in dimorphic fungi: extracellular control of yeast-mycelium dimorphism in Ceratocystis ulmi. Appl Environ Microbiol 70(3):1356–1359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hornby JM, Jensen EC, Lisec AD, Tasto JJ, Jahnke B, Shoemaker R, Dussault P, Nickerson KW (2001) Quorum sensing in the dimorphic fungusCandida albicans is mediated by farnesol. Appl Environ Microbiol 67(7):2982–2992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Humphries J, Xiong L, Liu J, Prindle A, Yuan F, Arjes HA, Tsimring L, Süel GM (2017) Species-independent attraction to biofilms through electrical signaling. Cell 168(1):200–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunter GAM, Vasquez FG, Keener JP (2013) A mathematical model and quantitative comparison of the small RNA circuit in the Vibrio harveyi and Vibrio cholerae quorum sensing systems. Phys Biol 10: 046007. http://stacks.iop.org/1478-3975/10/i=4/a=046007

  • Iyer R, Iverson TM, Accardi A, Miller C (2002) A biological role for prokaryotic ClC chloride channels. Nature 419(6908):715–718

    Article  CAS  PubMed  Google Scholar 

  • James S, Nilsson P, James G, Kjelleberg S, Fagerström T (2000) Luminescence control in the marine bacterium Vibrio fischeri: an analysis of the dynamics of lux regulation1. J Mol Biol 296(4):1127–1137

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Lee A, Chen J, Cadene M, Chait BT, MacKinnon R (2002) Crystal structure and mechanism of a calcium-gated potassium channel. Nature 417(6888):515–522

    Article  CAS  PubMed  Google Scholar 

  • Karafyllidis IG (2012) Quantum gate circuit model of signal integration in bacterial quorum sensing. IEEE/ACM Transactions on Computational Biology and Bioinformatics 9(2):571–579

    Article  PubMed  Google Scholar 

  • Karlsson D, Karlsson S, Gustafsson E, Normark BH, Nilsson P (2007) Modeling the regulation of the competence-evoking quorum sensing network in Streptococcus pneumoniae. Biosystems 90(1):211–223

    Article  CAS  PubMed  Google Scholar 

  • Khalil AS, Collins JJ (2010) Synthetic biology: applications come of age. Nat Rev Genet 11(5):367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koerber AJ, King JR, Williams P (2005) Deterministic and stochastic modelling of endosome escape by Staphylococcus aureus:“quorum” sensing by a single bacterium. J Math Biol 50(4):440–488

    Article  CAS  PubMed  Google Scholar 

  • Kügler S, Sebghati TS, Eissenberg LG, Goldman WE (2000) Phenotypic variation and intracellular parasitism by Histoplasma capsulatum. Proc Natl Acad Sci 97(16):8794–8798

    Article  PubMed  PubMed Central  Google Scholar 

  • Lambert N, Chen YN, Cheng YC, Li CM, Chen GY, Nori F (2013) Quantum biology. Nat Phys 9(1):10–18

    Article  CAS  Google Scholar 

  • Lane N (2015) The unseen world: reflections on Leeuwenhoek (1677) Concerning little animals. Philosophical Transactions of the Royal Society B: Biological Sciences 370(1666): 20140344. 10.1098/rstb.2014.0344

  • Lee H, Chang YC, Nardone G, Kwon-Chung KJ (2007) TUP1 disruption in Cryptococcus neoformans uncovers a peptide-mediated density-dependent growth phenomenon that mimics quorum sensing. Mol Microbiol 64:591–601

    Article  CAS  PubMed  Google Scholar 

  • Leewenhoeck A (1677) Observation, communicated to the publisher by Mr. Antony van Leewenhoeck, in a Dutch letter of the 9 Octob. 1676 here English'd: concerning little animals by him observed in rain-well-sea and snow water; as also in water wherein pepper had lain infused. Philos Trans 12:821–831. https://doi.org/10.1098/rstl.1677.0003

    Article  Google Scholar 

  • Lentini R, Yeh Martín N, Forlin M, Belmonte L, Fontana J, Cornella M, Martini L, Tamburini S, Bentley EW, Jousson O, Mansy SS (2017) Two-way chemical communication be- tween artificial and natural cells. ACS Central Science 3(2):117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Wang L, Hashimoto Y, Tsao CY, Wood TK, Valdes JJ, Zafiriou E, Bentley WE (2006) A stochastic model of Escherichia coli AI-2 quorum signal circuit reveals alternative synthesis pathways. Mol Syst Biol 2(1):67

    PubMed  PubMed Central  Google Scholar 

  • Liu J, Arthur P, Jacqueline H, Marçal G-S, Munehiro A, Lee Dong-yeon D, San L, Jordi G-O, Süel GM (2015a) Metabolic co-dependence gives rise to collective oscillations within biofilms. Nature 523(7562):550–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Corral MR, Prindle A, Dong-yeon LD, Larkin J, Sagarra GM, Ojalvo GJ, Süel MG (2017) Coupling between distant biofilms and emergence of nutrient time-sharing. Science 356(6338):638–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Lavis LD, Betzig E (2015b) Imaging live-cell dynamics and structure at the single-molecule level. Mol Cell 58(4):644–659

    Article  CAS  PubMed  Google Scholar 

  • Majumdar S, Datta S, Roy S (2012) Mathematical modelling of quorum sensing and bioluminescence in bacteria. Int J Adv Appl Sci 1(3):139–146

    Google Scholar 

  • Majumdar S, Mondal S (2016) Conversation game: talking bacteria. J Cell Commun Signal 10(4):331–335

    Article  PubMed  PubMed Central  Google Scholar 

  • Majumdar S, Pal S (2016) Quorum sensing: a quantum perspective. Journal of cell communication and signaling 10(3):173–175

    Article  PubMed  PubMed Central  Google Scholar 

  • Majumdar S, Pal S (2017a) Cross-species communication in bacterial world. Journal of cell communication and signaling 11(2):187–190

    Article  PubMed  PubMed Central  Google Scholar 

  • Majumdar S, Pal S (2017b) Bacterial intelligence: imitation games, time-sharing, and long-range quantum coherence. Journal of cell communication and signaling 11(3):281–284

    Article  PubMed  PubMed Central  Google Scholar 

  • Majumdar S, Roy S (2017a) Relevance of quantum mechanics in bacterial communication. NeuroQuantology. Accepted

  • Majumdar S, Roy S (2017b) Spatiotemporal patterns and chaos in non-equilibrium bacterial communication. 17th BIOMAT International Symposium on Mathematical and Computational Biology, Moscow

  • Majumdar S, Roy S, Llinas R (2017) Bacterial conversations and pattern formation. bioRxiv. https://doi.org/10.1101/098053

  • Marguet P, Balagadde F, Tan C, You L (2007) Biology by design: reduction and synthesis of cellular components and behaviour. J R Soc Interface 4(15):607–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marketon MM, Glenn SA, Eberhard A, González JE (2003) Quorum sensing controls exopolysaccharide production in Sinorhizobium meliloti. J Bacteriol 185(1):325–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee S, Moustafa D, Smith CD, Goldberg JB, Bassler BL (2017) The RhlR quorum-sensing receptor controls Pseudomonas aeruginosa pathogenesis and biofilm development independently of its canonical homoserine lactone autoinducer. PLoS Pathog 13(7):e1006504

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nadell CD, Xavier JB, Levin SA, Foster KR (2008) The evolution of quorum sensing in bacterial biofilms. PLoS Biol 6(1):e14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nandagopal N, Elowitz MB (2011) Synthetic biology: integrated gene circuits. Science 333(6047):1244–1248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • National Institutes of Health (2007) Immunology of Biofilms (R01), grants.nih.gov/grants/guide/pa-files/PA-07-288.html

  • Netotea S, Bertani I, Steindler L, Kerényi Á, Venturi V, Pongor S (2009) A simple model for the early events of quorum sensing in Pseudomonas aeruginosa: modeling bacterial swarming as the movement of an" activation zone". Biol Direct 4(1):6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nilsson P, Olofsson A, Fagerlind M, Fagerström T, Rice S, Kjelleberg S, Steinberg P (2001) Kinetics of the AHL regulatory system in a model biofilm system: how many bacteria constitute a “quorum”? J Mol Biol 309(3):631–640

    Article  CAS  PubMed  Google Scholar 

  • Noireaux V, Libchaber A (2004) A vesicle bioreactor as a step toward an artificial cell assembly. Proc Natl Acad Sci U S A 101(51):17669–17674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noskov SY, Berneche S, Roux B (2004) Control of ion selectivity in potassium channels by electrostatic and dynamic properties of carbonyl ligands. Nature 431(7010):830–834

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Velázquez J, Gölgeli M, García-Contreras R (2016) Mathematical modelling of bacterial quorum sensing: a review. Bull Math Biol 78(8):1585–1639

    Article  PubMed  CAS  Google Scholar 

  • Prindle A, Jintao L, Munehiro A, San L, Jordi G-O, Süel GM (2015) Ion channels enable electrical communication in bacterial communities. Nature 527(7576):59–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quan DN, Tsao CY, Wu HC, Bentley WE (2016) Quorum sensing desynchronization leads to bimodality and patterned behaviors. PLoS Comput Biol 12(4):e1004781

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Quiñones B, Dulla G, Lindow SE (2005) Quorum sensing regulates exopolysaccharide production, motility, and virulence in Pseudomonas syringae. Mol Plant-Microbe Interact 18(7):682–693

    Article  PubMed  CAS  Google Scholar 

  • Reguera G, Nevin KP, Nicoll JS, Covalla SF, Woodard TL, Lovley DR (2006) Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Appl Environ Microbiol 72(11):7345–7348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren D, Navarro B, Xu H, Yue L, Shi Q, Clapham DE (2001) A prokaryotic voltage-gated sodium channel. Science 294(5550):2372–2375

    Article  CAS  PubMed  Google Scholar 

  • Roca MG, Arlt J, Jeffree CE, Read ND (2005) Cell biology of conidial anastomosis tubes in Neurospora crassa. Eukaryot Cell 4(5):911–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy S, Llinás R (2009) Relevance of quantum mechanics on some aspects of ion channel function. Comptes rendus biologies 332(6):517–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russo G, Slotine JJE (2010) Global convergence of quorum-sensing networks. Phys Rev E 82(4):041919

    Article  CAS  Google Scholar 

  • Salari V, Naeij H, Shafiee A (2017) Quantum Interference and Selectivity through Biological Ion Channels. Sci Rep 7:41625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schopf JW (1994) Disparate rates, differing fates: tempo and mode of evolution changed from the Precambrian to the Phanerozoic. Proc Natl Acad Sci U S A 91(15):6735–6742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schopf JW, Kitajima K, Spicuzza MJ, Kudryavtsev AB, Valley JW (2018) SIMS analyses of the oldest known assemblage of microfossils document their taxon-correlated carbon isotope compositions. Proc Natl Acad Sci U S A 115(1):53–58

    Article  CAS  PubMed  Google Scholar 

  • Schrödinger E (1944) What is life? Cambridge University Press, Cambridge

    Google Scholar 

  • Scott SR, Hasty J (2016) Quorum sensing communication modules for microbial consortia. ACS Synth Biol 5(9):969–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Severin FF, Meer MV, Smirnova EA, Knorre DA, Skulachev VP (2008) Natural causes of programmed death of yeast Saccharomyces cerevisiae. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 1783(7):1350–1353

    Article  CAS  Google Scholar 

  • Shapiro JA (1998) Thinking about bacterial populations as multicellular organisms. Annu Rev Microbiol 52:81–104

    Article  CAS  PubMed  Google Scholar 

  • Shou W, Ram S, Vilar JM (2007) Synthetic cooperation in engineered yeast populations. Proc Natl Acad Sci 104(6):1877–1882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simpson ML (2004) Rewiring the cell: synthetic biology moves towards higher functional complexity. Trends Biotechnol 22(11):555–557

    Article  CAS  PubMed  Google Scholar 

  • Solano C, Echeverz M, Lasa I (2014) Biofilm dispersion and quorum sensing. Curr Opin Microbiol 18:96–104

    Article  CAS  PubMed  Google Scholar 

  • Song H, Payne S, Gray M, You L (2009) Spatiotemporal modulation of biodiversity in a synthetic chemical-mediated ecosystem. Nat Chem Biol 5(12):929–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stricker J, Cookson S, Bennett MR, Mather WH, Tsimring LS, Hasty J (2008) A fast, robust and tunable synthetic gene oscillator. Nature 456(7221):516–519

    Article  CAS  PubMed  Google Scholar 

  • Tabareau N, Slotine JJ, Pham QC, Breakspear M (2010) How synchronization protects from noise. PLoS Comput Biol 6(1):e1000637. https://doi.org/10.1371/journal.pcbi.1000637

  • Thompson JA, Oliveira RA, Djukovic A, Ubeda C, Xavier KB (2015) Manipulation of the quorum sensing signal AI-2 affects the antibiotic-treated gut microbiota. Cell Rep 10(11):1861–1871

    Article  CAS  PubMed  Google Scholar 

  • Vaziri A, Plenio MB (2010) Quantum coherence in ion channels: resonances, transport and verification. New J Phys 12(8):085001

    Article  CAS  Google Scholar 

  • Viretta AU, Fussenegger M (2004) Modeling the quorum sensing regulatory network of human-pathogenic Pseudomonas aeruginosa. Biotechnol Prog 20:670–678. https://doi.org/10.1021/bp034323l

    Article  CAS  PubMed  Google Scholar 

  • Vuong C, Gerke C, Somerville GA, Fischer ER, Otto M (2003) Quorum-sensing control of biofilm factors in Staphylococcus epidermidis. J Infect Dis 188(5):706–718

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Schaefer AL, Dandekar AA, Greenberg EP (2015) Quorum sensing and policing of Pseudomonas aeruginosa social cheaters. Proc Natl Acad Sci 112(7):2187–2191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ward J (2008) Mathematical modeling of quorum-sensing control in biofilms. In: Balaban N (ed) Control of biofilm infections by signal manipulation, vol. 2 of Springer Series on Biofilms. Springer, Berlin, pp 79–108

    Chapter  Google Scholar 

  • Ward JP, King JR, Koerber AJ, Croft JM, Sockett RE, Williams P (2003) Early development and quorum sensing in bacterial biofilms. J Math Biol 47(1):23–55

    Article  PubMed  Google Scholar 

  • Ward JP, King JR, Koerber AJ, Croft JM, Sockett RE, Williams P (2004) Cell-signalling repression in bacterial quorum sensing. Mathematical Medicine and Biology 21(3):169–204

    Article  CAS  PubMed  Google Scholar 

  • Ward JP, King JR, Koerber AJ, Williams P, Croft JM, Sockett RE (2001) Mathematical modelling of quorum sensing in bacteria. Mathematical Medicine and Biology 18(3):263–292

    Article  CAS  Google Scholar 

  • Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346

    Article  CAS  PubMed  Google Scholar 

  • Weber M, Buceta J (2011) Noise regulation by quorum sensing in low mRNA copy number systems. BMC Syst Biol 5(1):11

    Article  PubMed  PubMed Central  Google Scholar 

  • Williams P, Winzer K, Chan WC, Camara M (2007) Look who’s talking: communication and quorum sensing in the bacterial world. Philos Trans R Soc Lond Ser B Biol Sci 362(1483):1119–1134

    Article  CAS  Google Scholar 

  • Wongsuk T, Pumeesat P, Luplertlop N (2016) Fungal quorum sensing molecules: role in fungal morphogenesis and pathogenicity. J Basic Microbiol 56(5):440–447

    Article  CAS  PubMed  Google Scholar 

  • Yan J, Nadell CD, Stone HA, Wingreen NS, Bassler BL (2017) Extracellular-matrix-mediated osmotic pressure drives Vibrio cholerae biofilm expansion and cheater exclusion. Nat Commun 8(1):327

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • You L, Cox RS III, Weiss R, Arnold FH (2004) Programmed population control by cell–cell communication and regulated killing. Nature 428(6985):868–871

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Wang Q (2017) Three-dimensional numerical simulations of biofilm dynamics with quorum sensing in a flow cell. Bull Math Biol 79(4):884–919

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarangam Majumdar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majumdar, S., Pal, S. Information transmission in microbial and fungal communication: from classical to quantum. J. Cell Commun. Signal. 12, 491–502 (2018). https://doi.org/10.1007/s12079-018-0462-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12079-018-0462-6

Keywords

Navigation