Skip to main content
Log in

From Goethe’s plant archetype via Haeckel’s biogenetic law to plant evo-devo 2016

  • Original Paper
  • Published:
Theory in Biosciences Aims and scope Submit manuscript

Abstract

In 1790, the German poet Johann W. v. Goethe (1749–1832) proposed the concept of a hypothetical sessile organism known as the ‘Plant Archetype,’ which was subsequently reconstructed and depicted by 19th-century botanists, such as Franz Unger (1800–1870) and Julius Sachs (1832–1897), and can be considered one of the first expressions of Evo-Devo thinking. Here, we present the history of this concept in the context of Ernst Haeckel’s (1834–1919) biogenetic law espoused in his Generelle Morphologie der Organismen of 1866. We show that Haeckel’s idea of biological recapitulation may help to explain why various phenomena, such as the ontogenetic transformations in the stellar anatomy of lycopods and ferns, the transition from primary to secondary anatomy of seed plants, the presence of unfused juvenile cone scale segments in the Japanese cedar (Cryptomeria japonica), and the transition of C3- to C4-photosynthesis in the ontogeny of maize (Zea mays), appear to support his theories. In addition, we outline the current status of plant evolutionary developmental biology (Evo-Devo), which can be traced back to Haeckel's (1866) biogenetic law, with a focus on the model plant thale cress (Arabidopsis thaliana).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Banks HP (1975) Reclassification of psilophyta. Taxon 24:401–413

    Article  Google Scholar 

  • Bierhorst DW (1971) Morphology of vascular plants. Macmillian, New York

    Google Scholar 

  • Bower FO (1958) The origin of a land flora. Hafner, New York

    Google Scholar 

  • Breidbach O (2006) Goethes metamorphosenlehre. Wilhem Fink Verlag, München

    Google Scholar 

  • Breidbach O (2007) Ernst Haeckel. Bildwelten der Natur. Prestel Verlag, München

    Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, London

    Book  Google Scholar 

  • de Beer G (1958) Embryos and ancestors. Clarendon Press, Oxford

    Google Scholar 

  • Deng Z, Oses-Prieto JA, Kutschera U, Tseng TS, Hao L, Burlingame AL, Wang Z, Briggs WR (2014) Blue light-induced proteomic changes in etiolated Arabidopsis seedlings. J Proteome Res 13:2524–2533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Florin R (1931) Untersuchungen zur Stammesgeschichte der Coniferales und Cordaitales. Kgl Svenska Vet-Acad Handl Ser 3(10):1–588

    Google Scholar 

  • Florin R (1951) Evolution in cordaites and conifers. Acta Horti Berg 15:285–388

    Google Scholar 

  • Friedman WE, Diggle PK (2011) Charles Darwin and the origins of plant evolutionary developmental biology. Plant Cell 23:1194–1207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gliboff S (2008) H. G. Bronn, Ernst Haeckel, and the origins of German Darwinism: a study in translation and transformation. MIT Press, Cambridge

    Book  Google Scholar 

  • Haeckel E (1866) Generelle Morphologie der Organismen. Allgemeine Grundzüge der Organischen Formen-Wissenschaft, Mechanisch begründet durch die von Charles Darwin reformierte Descendenz-Theorie, vols I and II. Verlag Georg Reimer, Berlin

  • Haeckel E (1874) Die Gastraea-Theorie, die phylogenetische Klassification des Tierreiches und Homologie der Keimblätter. Jena Zentrablatt Naturwissenschaften 8:1–55

    Google Scholar 

  • Hartwig T, Wang ZY (2015) The molecular circuit of steroid signalling in plants. Essays Biochem 58:71–82

    Article  PubMed  Google Scholar 

  • Hossfeld U (2010) Ernst Haeckel. Orange Press, Freiburg

    Google Scholar 

  • Hossfeld U (2016) Geschichte der biologischen Anthropologie, 2nd edn. Franz Steiner Verlag, Stuttgart

    Google Scholar 

  • Hossfeld U, Olsson L (2003) The road from Haeckel: the Jena tradition in evolutionary morphology and the origins of “Evo-Devo”. Biol Philos 18:285–307

    Article  Google Scholar 

  • Hossfeld U, Levit GS, Olsson L (2016) 150 “Biogenetisches Grundgesetz”. Biol unserer Zeit 3:190–195

    Article  Google Scholar 

  • Kerner von Marilaun A (1883) Pflanzenleben, vol 1. Bibliographisches Institut, Leipzig

    Google Scholar 

  • Koornneef M, Meinke D (2010) The development of Arabidopsis as a model plant. Plant J 61:909–921

    Article  CAS  PubMed  Google Scholar 

  • Kutschera U (2015a) Comment: 150 years of an integrative plant physiology. Nat Plants 1(15131):1–3

    Google Scholar 

  • Kutschera U (2015b) Basic versus applied research: Julius Sachs (1832–1897) and the experimental physiology of plants. Plant Signal Behav 10(9):e1062958:1–e1062958:9

    Google Scholar 

  • Kutschera U, Briggs WR (2009) From Charles Darwin’s botanical country-house studies to modern plant biology. Plant Biol 11:785–795

    Article  CAS  PubMed  Google Scholar 

  • Kutschera U, Briggs WR (2013) Seedling development in buckwheat and the discovery of the photomorphogenic shade-avoidance response. Plant Biol 15:931–940

    Article  CAS  PubMed  Google Scholar 

  • Kutschera U, Niklas KJ (2004) The modern theory of biological evolution: an expanded synthesis. Naturwissenschaften 91:255–276

    Article  CAS  PubMed  Google Scholar 

  • Kutschera U, Niklas KJ (2005) Endosymbiosis, cell evolution, and speciation. Theory Biosci 124:1–24

    Article  CAS  PubMed  Google Scholar 

  • Kutschera U, Niklas KJ (2006) Photosynthesis research on yellowtops: macroevolution in progress. Theory Biosci 125:81–92

    CAS  PubMed  Google Scholar 

  • Kutschera U, Niklas KJ (2009) Evolutionary plant physiology: Charles Darwin’s forgotten synthesis. Naturwissenschaften 96:1339–1354

    Article  CAS  PubMed  Google Scholar 

  • Kutschera U, Niklas KJ (2013) Cell division and turgor-driven stem elongation in juvenile plants: a synthesis. Plant Sci 207:45–56

    Article  CAS  PubMed  Google Scholar 

  • Kutschera U, Niklas KJ (2016) The evolution of the plant genome-to-morphology auxin circuit. Theory Biosci 35:175–186

    Article  Google Scholar 

  • Kutschera U, Weisblat DA (2015) Leeches of the genus Helobdella as model organisms for Evo-Devo studies. Theory Biosci 134:93–104

    Article  PubMed  Google Scholar 

  • Kutschera U, Pieruschka R, Berry JA (2010) Leaf development, gas exchange characteristics and photorespiratory activity in maize seedlings. Photosynthetica 48:617–622

    Article  CAS  Google Scholar 

  • Levit GS, Hossfeld U, Olsson L (2014a) The Darwinian revolution in Germany: from evolutionary morphology to the modern synthesis. Endeavour 38:268–278

    Article  PubMed  Google Scholar 

  • Levit GS, Reinhold P, Hossfeld U (2014b) Goethe’s “Comparirte Anatomy” as a foundation for the growth of theoretical and applied biomedical sciences in Jena. Theory Biosci 134:9–15

    Article  CAS  PubMed  Google Scholar 

  • Mayr E (1982) The growth of biological thought. Diversit, evolution, and inheritance. Harvard University Press, Cambridge

    Google Scholar 

  • Meckel JF (1811) Entwurf einer Darstellung der zwischen dem Embryozustande der höheren Tiere und dem permanenten der niederen stattfindenden Parallele: Beyträge zur vergleichenden Anatomie. Carl Heinrich Reclam, Leipzig

  • Niklas KJ (1985) The aerodynamics of wind pollination. Bot Rev 51:329–386

    Article  Google Scholar 

  • Niklas KJ (1997) The evolutionary biology of plants. The University of Chicago Press, Chicago

    Google Scholar 

  • Niklas KJ (2016) Plant evolution: an introduction to the history of life. The University of Chicago Press, Chicago

    Book  Google Scholar 

  • Niklas KJ, Cobb ED, Kutschera U (2014) Did meiosis evolve before sex and the evolution of eukaryotic life cycles? BioEssays 36:1091–1101

    Article  PubMed  Google Scholar 

  • Niklas KJ, Cobb ED, Kutschera U (2016) Haeckel’s biogenetic law and the land plant phylotypic stage. Bioscience 66:510–519

    Article  Google Scholar 

  • O’Farrell PH (2015) Growing an embryo from a single cell: a hurdle in animal life. In: Heald R, Hariharan IK, Wake DB (eds) Size control in biology: from organelles to organisms. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 1–24

    Google Scholar 

  • Olsson L, Levit GS, Hossfeld U (2010) Evolutionary developmental biology: its concepts and history with a focus on Russian and German contributions. Naturwissenschaften 97:951–969

    Article  CAS  PubMed  Google Scholar 

  • Provaart NF, Alonso J, Assmann SM et al (2016) 50 years of Arabidopsis research: highlights and future directions. New Phytol 209:921–944

    Article  Google Scholar 

  • Prud’homme B, Gompel N (2010) Evolutionary biology: genomic hourglass. Nature 468:768–769

    Article  PubMed  Google Scholar 

  • Pu L, Brady S (2010) Systems biology update: cell type-specific transcriptional regulatory networks. Plant Physiol 152:411–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raff RA (1996) The shape of life genes, development and the evolution of animal form. University of Chicago Press, Chicago

    Google Scholar 

  • Rebeiz M, Jikomes N, Kassner VA, Carroll SB (2011) Evolutionary origin of a novel gene expression pattern through co-option of the latent activities of existing regulatory sequences. Proc Natl Acad Sci USA 108:10036–10043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rensing SA (2016) (Why) does evolution favour embryogenesis? Trends Plant Sci 21:562–573

    Article  CAS  PubMed  Google Scholar 

  • Russell ES (1916) Form and function: a contribution tot he history of animal morphology. Murrey, London

    Book  Google Scholar 

  • Sachs J (1865) Handbuch der Experimental-Physiologie der Pflanzen. Verlag Wilhelm Engelmann, Leipzig

    Google Scholar 

  • Sachs J (1875) Geschichte der Botanik von 16. Jahrhundert bis 1860. Verlag von R, Oldenbourg, München

    Google Scholar 

  • Sachs J (1882) Vorlesungen über Pflanzen-Physiologie. Verlag Wilhelm Engelmann, Leipzig

    Google Scholar 

  • Serrés ERA (1827) Théorie des formations organiques, ou rescherches d’anatomie transcendante sur les lois de l’organogénie, appliquée à l’anatomie pathologique. Annales de la Societe des Sciences Naturelles et d’Archeologie de Toulon et du Var 21:5–49

  • Shen MM (2007) Nodal signaling: developmental roles and regulation. Development 134:1023–1034

    Article  CAS  PubMed  Google Scholar 

  • Sturm JG (1796) Deutschlands Flora in Abbildungen nach der Natur mit Beschreibungen. Bd. 6. Selbstverlag, Nürnberg

  • Taylor TN, Taylor EL, Krings M (2009) Paleobotany: the biology and evolution of fossil plants. Elsevier, Amsterdam

    Google Scholar 

  • Unger F (1852) Ideale Darstellung einer vollkommenen Pflanze. Botanische Briefe, Wien

    Google Scholar 

  • von Goethe JW (1790) Versuch die Metamorphose der Pflanzen zu erklären. Ettinger, Gotha

    Book  Google Scholar 

  • Wardlaw C (1955) Embryogenesis in plants. Methuen, London

    Book  Google Scholar 

  • White RA (1970) Comparative anatomy of the Aspidiaceae. I. Stelar pattern development in young sporophytes of Tectaria. Am J Bot 57:458–467

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Alexander von Humboldt-Stiftung (Bonn, Germany) (AvH-Fellowship Stanford 2015/16 to UK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl J. Niklas.

Additional information

Dedicated to the memory of Olaf Breidbach (1957–2014).

This article forms part of a special issue of Theory in Biosciences in commemoration of Olaf Breidbach.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niklas, K.J., Kutschera, U. From Goethe’s plant archetype via Haeckel’s biogenetic law to plant evo-devo 2016. Theory Biosci. 136, 49–57 (2017). https://doi.org/10.1007/s12064-016-0237-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12064-016-0237-7

Keywords

Navigation