Skip to main content
Log in

Topological determination of early morphogenesis in Metazoa

  • Original Paper
  • Published:
Theory in Biosciences Aims and scope Submit manuscript

Abstract

This paper presents a topological interpretation of some developmental events through the use of well-known concepts and theorems of combinatorial geometry. The organization of early embryo using a simulation of cleavage considering only blastomere contacts is examined. Each blastomere is modeled as a topological cell and whole embryo—as cell packing. The egg cleavage results in a pattern of cellular contacts on the surface of each blastomere and whole embryo, a discrete morphogenetic field. We find topological distinctions between different types of early egg cleavage and suggest a topological classification of cleavage. Blastulation and gastrulation may be related to an inevitable emergence of discrete curvature that directs development in three-dimensional space. The relationship between local and global orders in metazoan development, i.e., between local morphogenetic processes and integral developmental patterns, is established. Thus, this methodology reveals a topological imperative: a certain set of topological rules that constrains and directs biological morphogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Anderson DT (1973) Embryology and phylogeny in annelids and arthropods. Pergamon Press, Oxford, New York, Toronto, Sydney, Braunschweig

    Google Scholar 

  • Atiyah M, Sutcliffe P (2003) Polyhedra in physics, chemistry and geometry. Milan J Math 71:33–58

    Article  Google Scholar 

  • Baues O, Peyerimhoff N (2001) Curvature and geometry of tessellating plane graphs. Discret Comput Geom 25:141–159

    Google Scholar 

  • Bourbaki N (1948) L`architecture de mathematiques. La Mathematique ou les Mathematiques? In: Les Grands Courants de la Pensee Mathematiques. Cahiers du Sud, Paris, pp 35–47

  • Child CM (1900) The early development of Arenicola and Sternaspis. Wilhelm Roux’ Archiv für Entwicklungsmechanik der Organismen 9:587–723

    Article  Google Scholar 

  • Conklin EG (1897) The embryology of Crepidula, a contribution to the cell lineage and early development of some marine gasteropods. J Morphol 13:1–226

    Article  Google Scholar 

  • Cox SJ, Graner F (2004) Three-dimensional bubble clusters: shape, packing, and growth rate. Phys Rev E 69:1409-1–1409-6

    Google Scholar 

  • Dan-Sohkawa M, Fujisawa H (1980) Cell dynamics of the blastulation process in the starfish, Asterina pectinifera. Dev Biol 77:328–339

    Article  CAS  PubMed  Google Scholar 

  • de Reuille PB, Bohn-Courseau I, Ljung K, Morin H, Carraro N, Godin C, Traas J (2006) Computer simulations reveal properties of the cell–cell signaling network at the shoot apex in Arabidopsis. Proc Natl Acad Sci USA 103:1627–1632

    Article  PubMed  Google Scholar 

  • Doi H (1984) Graph-theoretical analysis of cleavage pattern—graph developmental system and its application to cleavage pattern of Ascidian egg. Dev Growth Differ 26:49–60

    Article  Google Scholar 

  • Dolbilin N, Tanemura M (2006) How many facets on average can a tile have in a tiling? Forma 21:177–196

    Google Scholar 

  • Dormer KJ (1980) Fundamental tissue geometry for biologists. Cambridge University Press, Cambridge

    Google Scholar 

  • Dubrovin BA, Novikov SP, Fomenko AT (1992) Modern geometry—methods and applications, part I: the geometry of surfaces, transformation groups, and fields. Springer-Verlag, New York

    Google Scholar 

  • Dubrovin BA, Fomenko AT, Novikov SP (1995) Modern geometry-methods and applications, part II: the geometry and topology of manifolds. Springer-Verlag, New York

    Google Scholar 

  • Duvdevani-Bar S, Segel L (1994) On topological simulations in developmental biology. J Theor Biol 166:33–50

    Article  Google Scholar 

  • Gibson MC, Patel AB, Nagpal R, Perrimon N (2006) The emergence of geometric order in proliferating metazoan epithelia. Nature 442:1038–1041

    Article  CAS  PubMed  Google Scholar 

  • Giudice G (1962) Restitution of whole larvae from disaggregated cells of sea urchin embryos. Dev Biol 5:402–411

    Article  CAS  PubMed  Google Scholar 

  • Gromov M (1987) Hyperbolic groups, in Essays in group theory. Springer, New York, pp 75–263

  • Hales TC (2000) Cannonballs and honeycombs. Notices Am Math Soc 47:440–449

    Google Scholar 

  • Hardin DP, Saff EB (2004) Discretizing manifolds via minimum energy points. Notices Am Math Soc 51:1186–1194

    Google Scholar 

  • Higuchi Y (2001) Combinatorial curvature for planar graphs. J Graph Theory 38:220–229

    Article  Google Scholar 

  • Hinegardner RT (1975) Morphology and genetics of sea urchin development. Am Zool 15:679–689

    Google Scholar 

  • Hoffman WC (1973) A system of axioms for mathematical biology. Math Biosci 16:11–29

    Article  Google Scholar 

  • Honda H, Tanemura M, Nagai T (2004) A three-dimensional vertex dynamics cell model of space-filling polyhedra simulating cell behavior in a cell aggregate. J Theor Biol 226:439–453

    Article  PubMed  Google Scholar 

  • Hulbary RL (1948) Three-dimensional cell shape in the tuberous roots of Asparagus and in the leaf of Rhoeo. Am J Bot 35:558–566

    Article  Google Scholar 

  • Isaeva V, Presnov E, Chernyshev A (2006) Topological patterns in metazoan evolution and development. Bull Math Biol 68:2053–2067

    Article  PubMed  Google Scholar 

  • Isaeva VV, Kasyanov NV, Presnov EV (2008) Analysis situs of spatial-temporal architecture in biological morphogenesis. In: Kelly JT (ed) Progress in mathematical biology research. Nova Science Publishers, New York, pp 141–189

    Google Scholar 

  • Jockusch H, Dress A (2003) From sphere to torus: a topological view of the metazoan body plan. Bull Math Biol 65:57–65

    Article  PubMed  Google Scholar 

  • Kadokawa Y, Dan-Sohkawa M, Eguchi G (1986) Studies on mechanism of blastula formation in starfish embryos denuded of fertilization membrane. Cell Differ 19:79–88

    Article  CAS  PubMed  Google Scholar 

  • Klassert S, Lenz D, Peyerimhoff N, Stollmann P (2006) Elliptic operators on planar graphs: unique continuation for eigenfunctions and nonpositive curvature. Proc Am Math Soc 134:1549–1559

    Article  Google Scholar 

  • Klein DJ (2002) Topo-combinatoric categorization of quasi-local graphitic defects. Phys Chem Chem Phys 4:2099–2110

    Article  CAS  Google Scholar 

  • Kolega J (1986) The cellular basis of epithelial morphogenesis. In: Browder W (ed) Developmental biology, vol 2. Plenum Press, pp 103–143

  • Korn RW (1980) The changing shape of plant cells: transformations during cell proliferation. Ann Bot 46:649–666

    Google Scholar 

  • Lewis FT (1943) A geometric accounting for diverse shapes of 14-hedral cells: the transition from dodecahedra to tetrakaidecahedra. Am J Bot 31:74–81

    Article  Google Scholar 

  • Lewis HW, Goel NS, Thompson RL (1988) Simulation of cellular compaction and Internalization in mammalian embryo development. 2. Models for spherical embryos. Bull Math Biol 50:121–142

    Article  PubMed  Google Scholar 

  • Listing IB (1847) Vorstudien zur Topologie. Universität Göttingen, Göttingen

    Google Scholar 

  • Maresin VM, Presnov EV (1985) Topological approach to embryogenesis. J Theor Biol 114:387–398

    Article  CAS  PubMed  Google Scholar 

  • Matzke EB (1945) The three-dimensional shapes of bubbles in foams. Proc Natl Acad Sci USA 31:281–289

    Article  CAS  PubMed  Google Scholar 

  • Mescheryakov VN, Beloussov LV (1978) Spatial organization of cleavage, in Itogi Nauki i Tehniki. In: VINITI (in Russian), Moscow, pp 1–100

  • Morris VB, Dixon KE, Cowan R (1989) The topology of cleavage patterns with examples from embryos of Nereis, Styela and Xenopus. Philos Trans R Soc Lond B 325:1–36

    Article  Google Scholar 

  • Needham J (1936) Order and life. Cambridge University Press, Cambridge

    Google Scholar 

  • O’Keeffe M (1999) Crystal structures—tiling by numbers. Nature 400:617–618

    Article  Google Scholar 

  • Pfender F, Ziegler GM (2004) Kissing numbers, sphere packings, and some unexpected proofs. Notices Am Math Soc 51:873–883

    Google Scholar 

  • Pivar S (2007) An inconvenient theory. The origin of living structure by self-organization. Dalton Press, New York

    Google Scholar 

  • Poudret M, Arnould A, Comet JP, Le Gall P, Meseure P, Kepes F (2008) Topology-based abstraction of complex biological systems: application to the Golgi apparatus. Theory Biosci 127:79–88

    Article  PubMed  Google Scholar 

  • Presnov EV (1982) Classification of biological shapes. In: Zotin AI, Presnov EV (eds) Mathematical developmental biology. Nauka (in Russian), Moscow, pp 126–135

  • Presnov EV (1999) Synchronization of cell division. J Biol Syst 7:213–223

    Article  Google Scholar 

  • Presnov EV, Isaeva VV (1990) Positional information as symmetry of morphogenetic fields. Forma 5:59–61

    Google Scholar 

  • Presnov EV, Isaeva VV (1991) Local and global aspects of biological morphogenesis. Speculations Sci Technol 14:68–75

    Google Scholar 

  • Presnov EV, Isaeva VV (1996) Topological classification: onto- and phylogenesis. Memorie della Societa Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano 27:89–94

    Google Scholar 

  • Presnov EV, Malyghin SN, Isaeva VV (1988) Topological and thermodynamic structure of morphogenesis. In: Lamprecht I, Zotin AI (eds) Thermodynamics and pattern formation in biology. Walter de Gruyter, Berlin, pp 337–370

    Google Scholar 

  • Pyshnov MB (1980) Topological solution for cell-proliferation in intestinal crypt. 1. Elastic growth without cell loss. J Theor Biol 87:189–200

    Article  CAS  PubMed  Google Scholar 

  • Rios PR, Glicksman ME (2007) Topological and metrical analysis of normal grain growth in three dimensions. Acta Mater 55:1565–1571

    Article  CAS  Google Scholar 

  • Rivier N, Miri MF, Oguey C (2005) Plasticity and topological defects in cellular structures: extra matter, folds and crab moulting. Colloids Surf A 263:39–45

    Article  CAS  Google Scholar 

  • Rumpler M, Woesz A, Dunlop JWC, van Dongen JT, Fratzl P (2008) The effect of geometry on three-dimensional tissue growth. J R Soc Interface 5:1173–1180

    Article  PubMed  Google Scholar 

  • Smolyaninov VV (2006) Parallel structures in multidimensional networks. Biofizika 51:1106–1133

    CAS  Google Scholar 

  • Sullivan JM (2000) New tetrahedrally close-packed structures. In: Zitha P, Banhart J, Verbist G (eds) Foams, emulsions and their applications. Verlag MIT, Delft, pp 111–119

    Google Scholar 

  • Sullivan JM (2008) Curvatures of smooth and discrete surfaces, in discrete differential geometry. In: Bobenko AI, Schroder P, Sullivan JM, Ziegler GM (eds) Birkhäuser, Basel, pp 175–188

  • Tassy O, Daian F, Hudson C, Bertrand V, Lemaire P (2006) A quantitative approach to the study of cell shapes and interactions during early chordate embryogenesis. Curr Biol 16:345–358

    Article  CAS  PubMed  Google Scholar 

  • Thom R (1969) Topological models in biology. Topology 8:313–335

    Article  Google Scholar 

  • Thompson DW (1962) On growth and form. Cambridge University Press, London

    Google Scholar 

  • Waddington CH (1940) Organisers and genes. Cambridge University Press, Cambridge

    Google Scholar 

  • Wang X, Du Q (2008) Modelling and simulations of multi-component lipid membranes and open membranes via diffuse interface approaches. J Math Biol 56:347–371

    Article  PubMed  Google Scholar 

  • Weaire D, Phelan R (1994) A counterexample to Kelvin conjecture on minimal-surfaces. Philos Mag Lett 69:107–110

    Article  CAS  Google Scholar 

  • Weigel D (1993) Patterning the Arabidopsis embryo. Curr Biol 3:443–445

    Article  CAS  PubMed  Google Scholar 

  • Zallen JA (2007) Planar polarity and tissue morphogenesis. Cell 129:1051–1063

    Article  CAS  PubMed  Google Scholar 

  • Zammataro L, Serini G, Rowland T, Bussolino F (2007) Embryonic cleavage modeling as a computational approach to sphere packing problem. J Theor Biol 245:77–82

    Article  PubMed  Google Scholar 

  • Zarenkov NA (2006) Topology of cleavage in light of the Pierre Curie principle. Russ J Develop Biol 37:243–260

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene Presnov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Presnov, E., Isaeva, V. & Kasyanov, N. Topological determination of early morphogenesis in Metazoa. Theory Biosci. 129, 259–270 (2010). https://doi.org/10.1007/s12064-010-0103-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12064-010-0103-y

Keywords

Navigation