Skip to main content

Advertisement

Log in

Network Constrained Spatio-Temporal Hotspot Mapping of Crimes in Faisalabad

  • Published:
Applied Spatial Analysis and Policy Aims and scope Submit manuscript

Abstract

The Network Kernel Density Estimation (NetKDE) is a useful tool for visualization of point events over a network space, but it lacks in expressing the statistical significance of the mapped phenomenon. In this paper, we discuss the network hotspot detection of street crimes by integrating the NetKDE and the Getis-Ord GI* statistics. We selected four types of network-constrained crimes, i.e., bike theft, car theft, robbery, and snatching. The NetKDE is a useful technique to study the patterns of crimes bounded by the road networks. We used the Spatial Analysis along Networks (SANET) tools for computing the Network Kernel Density Estimation (NetKDE) and utilized the results of the NetKDE as input values for computing the Getis-Ord GI* statistics. The combination of these two methods can detect the network-constrained hotspots that are statistically significant. We also performed the network K-function, the extension of the Ripley’s K-function on networks. The network K-function analysis displays the significant clustering of crime events at different scales. Results demonstrated that the intensity of street crimes are strongly concentrated in the central part of the city. Moreover, the results reflected that the functional nature of different urban land use affects the frequency of crime events. Various urban land uses such as commercial, residential and industrial area seemed to influence the distribution of different types of crimes. The hotspot analysis has real potential, impacting the police patrolling protocols. The methods presented in this study suggest that there is a need to distinguish the planar and network hotspots and crime prevention policies could be enacted according to the type of hotspots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Adepeju, M., Rosser, G., & Cheng, T. (2016). Novel evaluation metrics for sparse spatio-temporal point process hotspot predictions - a crime case study. International Journal of Geographical Information Science, 30(11), 2133–2154. https://doi.org/10.1080/13658816.2016.1159684.

    Article  Google Scholar 

  • Borruso, G. (2008). Network Density Estimation: A GIS Approach for Analysing Point Patterns in a Network Space. Transactions in GIS, 12(3), 377–402.

    Article  Google Scholar 

  • Brantingham, P. (1995). Criminality of Place: Crime Generators and Crime Attractors. European Journal on Criminal Policy and Research, 3. https://doi.org/10.1007/bf02242925.

  • Brantingham, P. L., & Brantingham, P. J. (1999). Theoretical model of crime hot spot generation. Studies on Crime and Crime Prevention, 8(1), 7–26.

  • Buchin, K., Cabello, S., Gudmundsson, J., Löffler, M., Luo, J., Rote, G., et al. (2009). Detecting hotspots in geographic networks. In M. Sester, L. Bernard, & V. Paelke (Eds.), Advances in GIScience: Proceedings of the 12th AGILE Conference (pp. 217-231. Heidelberg: Springer Berlin.

  • Caplan, J. M., Kennedy, L. W., & Miller, J. (2011). Risk Terrain Modeling: Brokering Criminological Theory and GIS Methods for Crime Forecasting. Justice Quarterly, 28(2), 360–381.

    Article  Google Scholar 

  • Chainey, S., & Ratcliffe, J. (2005). Identifying crime hotspots. In GIS and crime mapping (pp. 145-182). Chichester: John Wiley & Sons, Inc. https://doi.org/10.1002/9781118685181.ch6

  • Chainey, S., Tompson, L., & Uhlig, S. (2008). The Utility of Hotspot Mapping for Predicting Spatial Patterns of Crime. Security Journal, 21(1), 4–28. https://doi.org/10.1057/palgrave.sj.8350066.

    Article  Google Scholar 

  • City District Government Faisalabad (2010). Faisalabad adminstrative divisions and population. http://www.faisalabad.gov.pk/statistics.aspx?task=pop. Accessed 10 09 2016.

  • Drawve, G. (2016). A Metric Comparison of Predictive Hot Spot Techniques and RTM. Justice Quarterly, 33(3), 369–397. https://doi.org/10.1080/07418825.2014.904393.

    Article  Google Scholar 

  • Eck, J. E., Chainey, S., Cameron, J. G., Leitner, M., & Wilson, R. E. (2005). Mapping Crime Understanding Hotspots. Washington, DC: U.S. Department of Justice, National Institute of Justice.

    Google Scholar 

  • Herrmann, C. (2013). Street-Level Spatiotemporal Crime Analysis: Examples from Bronx County, NY (2006–2010). In M. Leitner (Ed.), Crime Modeling and Mapping Using Geospatial Technologies (Vol. 8, pp. 73–104, Geotechnologies and the Environment): Springer Netherlands.

  • Kuo, P.-F., Lord, D., & Walden, T. D. (2013). Using geographical information systems to organize police patrol routes effectively by grouping hotspots of crash and crime data. Journal of Transport Geography, 30, 138–148. https://doi.org/10.1016/j.jtrangeo.2013.04.006.

    Article  Google Scholar 

  • LeBeau, J. L., & Leitner, M. (2011). Introduction: Progress in Research on the Geography of Crime. The Professional Geographer, 63(2), 161–173. https://doi.org/10.1080/00330124.2010.547147.

    Article  Google Scholar 

  • Lu, Y., & Chen, X. (2007). On the false alarm of planar K-function when analyzing urban crime distributed along streets. Social Science Research, 36(2), 611–632.

    Article  Google Scholar 

  • Matkan, A. A., Mohaymany, A. S., Mirbagheri, B., Shahri, M., & Mirzaie, M. (2012). Detecting The Accident Hazardious Segments Along Arak-Khomein Rural Road Using Network Kernel Density Estimation. Iran: International Geomatics Conference and Exhibition on Mapping and Spatial Information Tehran.

    Google Scholar 

  • Mitchell, A. (2005). The ESRI guide to GIS analysis: Spatial measurements and statistics. Redlands: ESRI Press.

  • Mohler, G. (2014). Marked point process hotspot maps for homicide and gun crime prediction in Chicago. International Journal of Forecasting, 30(3), 491–497. https://doi.org/10.1016/j.ijforecast.2014.01.004.

    Article  Google Scholar 

  • Mohler, G. O., Short, M. B., Brantingham, P. J., Schoenberg, F. P., & Tita, G. E. (2011). Self-Exciting Point Process Modeling of Crime. Journal of the American Statistical Association, 106(493), 100–108. https://doi.org/10.1198/jasa.2011.ap09546.

    Article  Google Scholar 

  • Nicolas, L. B., Produit, T., Tominc, B., Nikšič, M., & Goličnik Marušić, B. (2011). Network based Kernel Density Estimation for Cycling Facilities Optimal Location Applied to Ljubljana. In B. Murgante, O. Gervasi, A. Iglesias, D. Taniar, & B. Apduhan (Eds.), Computational Science and Its Applications - ICCSA 2011 (Vol. 6783, pp. 136–150, Lecture Notes in Computer Science): Springer Berlin Heidelberg.

  • Nie, K., Wang, Z., Du, Q., Ren, F., & Tian, Q. (2015). A Network-Constrained Integrated Method for Detecting Spatial Cluster and Risk Location of Traffic Crash: A Case Study from Wuhan, China. Sustainability, 7(3), 2662.

    Article  Google Scholar 

  • Okabe, A., Okunuki, K., & Shiode, S. (2006). SANET: A toolbox for spatial analysis on a network. Geographical Analysis, 38(1), 57–66.

    Article  Google Scholar 

  • Okabe, A., Satoh, T., & Sugihara, K. (2009). A Kernel Density Estimation Method for Networks, its Computational Method and a GIS-based tool. International Journal of Geographical Information Science, 23(1), 7–32. https://doi.org/10.1080/13658810802475491.

    Article  Google Scholar 

  • Okabe, A., & Sugihara, K. (2012). Modeling Spatial Events on and Alongside Networks. In Spatial Analysis along Networks (pp. 25–44): John Wiley & Sons, Ltd.

  • Okabe, A., & Yarnada, I. (2001). The K-Function Method on a Network and Its Computational Implementation. Geographical Analysis, 33(3), 271–290. https://doi.org/10.1111/j.1538-4632.2001.tb00448.x.

    Article  Google Scholar 

  • Ord, J. K., & Getis, A. (1995). Local Spatial Autocorrelation Statistics: Distributional Issues and an Application. Geographical Analysis, 27(4), 286–306. https://doi.org/10.1111/j.1538-4632.1995.tb00912.x.

    Article  Google Scholar 

  • Ripley, B. D. (1976). The Second-Order Analysis of Stationary Point Processes. Journal of Applied Probability, 13(2), 255–266.

    Article  Google Scholar 

  • Rosser, G., & Cheng, T. (2016). Improving the Robustness and Accuracy of Crime Prediction with the Self-Exciting Point Process Through Isotropic Triggering. Applied Spatial Analysis and Policy, 1–21, https://doi.org/10.1007/s12061-016-9198-y.

  • Rosser, G., Davies, T., Bowers, K. J., Johnson, S. D., & Cheng, T. (2016). Predictive Crime Mapping: Arbitrary Grids or Street Networks? Journal of Quantitative Criminology, 1–26, https://doi.org/10.1007/s10940-016-9321-x.

  • Rui, Y., Yang, Z., Qian, T., Khalid, S., Xia, N., & Wang, J. (2015). Network-constrained and category-based point pattern analysis for Suguo retail stores in Nanjing, China. International Journal of Geographical Information Science, 30(2), 186–199. https://doi.org/10.1080/13658816.2015.1080829.

    Article  Google Scholar 

  • Shiode, S., & Shiode, N. (2011). Street-level spatial interpolation using network-based IDW and ordinary kriging. Transactions in GIS, 15, 457–477.

    Article  Google Scholar 

  • Shiode, S., & Shiode, N. (2013). Network-Based Space-time search-window Technique for Hotspot detection of street-level crime incidents. International Journal of Geographical Information Science, 27(5), 866–882.

    Article  Google Scholar 

  • Smith, M. J. D., Goodchild, M. F., & Longley, P. A. (2015). Geospatial Analysis: A Comprehensive Guide to Principles, Techniques and Software Tools. UK: Troubador Publishing Ltd.

    Google Scholar 

  • Tompson, L., Partridge, H., & Shepherd, N. (2009). Hot Routes: Developing a New Technique for the Spatial Analysis of Crime. Crime Mapping, 1(1), 77–96.

    Google Scholar 

  • Vemulapalli, S. S., Ulak, M. B., Ozguven, E. E., Sando, T., Horner, M. W., Abdelrazig, Y., et al. (2016). GIS-based Spatial and Temporal Analysis of Aging-Involved Accidents: a Case Study of Three Counties in Florida. Applied Spatial Analysis and Policy, 1–27, https://doi.org/10.1007/s12061-016-9192-4.

  • Wang, D., Ding, W., Lo, H., Stepinski, T., Salazar, J., & Morabito, M. (2012). Crime hotspot mapping using the crime related factors—a spatial data mining approach. Applied Intelligence, 39(4), 772–781. https://doi.org/10.1007/s10489-012-0400-x.

    Article  Google Scholar 

  • Wilson, R. T. (2012). RTWTools for ArcGIS. (1.1 ed.).

  • Wortley, R., & Mazerolle, L. (2008). Environmental criminology and crime analysis: situating the theory, analytic approach and application. In R. Wortley, & L. Mazerolle (Eds.), Environmental criminology and crime analysis (pp. 1-15). Cullompton: Willan.

  • Xie, Z., & Yan, J. (2008). Kernel Density Estimation of traffic accidents in a network space. Computers. Environment and Urban Systems, 32(5), 396–406. https://doi.org/10.1016/j.compenvurbsys.2008.05.001.

    Article  Google Scholar 

  • Xie, Z., & Yan, J. (2013). Detecting traffic accident clusters with network kernel density estimation and local spatial statistics: an integrated approach. Journal of Transport Geography, 31, 64–71. https://doi.org/10.1016/j.jtrangeo.2013.05.009.

    Article  Google Scholar 

  • Yamada, I., & Thill, J.-C. (2004). Comparison of planar and network K-functions in traffic accident analysis. Journal of Transport Geography, 12(2), 149–158.

    Article  Google Scholar 

  • Yamada, I., & Thill, J.-C. (2010). Local Indicators of Network-Constrained Clusters in Spatial Patterns Represented by a Link Attribute. Annals of the Association of American Geographers, 100(2), 269–285.

    Article  Google Scholar 

  • Zhang, H., & Peterson, M. (2007). A spatial analysis of neighborhood crime in Omaha, Nebraska using alternative measures of crime rates. Internet Journal of Criminology, 31, 1–31.

    Google Scholar 

Download references

Acknowledgements

We are thankful for the Citizen Police Liaison Committee Faisalabad, SSP Operations Faisalabad City Police Department and City Police Officer Faisalabad for their generous help and providing the crimes data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiechen Wang.

Electronic supplementary material

ESM 1

(RAR 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalid, S., Shoaib, F., Qian, T. et al. Network Constrained Spatio-Temporal Hotspot Mapping of Crimes in Faisalabad. Appl. Spatial Analysis 11, 599–622 (2018). https://doi.org/10.1007/s12061-017-9230-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12061-017-9230-x

Keywords

Navigation