Skip to main content
Log in

A generalised approach to calculate various transport observables for a linear array of series and parallel quantum dots

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

A systematic generalised approach to find transport observables for a linear array of different quantum dot (QD) systems has been discussed, using non-equilibrium Green function (NEGF) formalism, in the presence of on-dot Coulomb interaction and inter-dot tunnelling. The equation of motion (EOM) method has been used to derive expressions for Green functions (GFs) within the simplest mean-field approximation to tackle the Coulomb correlation term. Starting from the mathematical structures of GFs for single, double and triple quantum dot systems, the expressions for GFs and transport observables have been generalised for the quantum dot systems containing N number of quantum dots in series as well as parallel linear array of dots. Further, the formulae so obtained have been used for numerical calculations of transmission probability and the IV characteristics of linear arrays of quantum dots in series as well as parallel configuration containing up to three dots. The results show that, with the increase in number of dots in the scattering region, transmission probability and electron current decrease in series case, while both quantities increase in parallel configuration of dots. The inter-dot tunnelling leads to the splitting of transmission peaks in double QD system in series case whereas, it induces Fano effect in triple QD system in parallel configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. P Harrison and Alex Valavanis, Quantum wells, wires and dots: Theoretical and computational physics of semiconductor nanostructures (John Wiley & Sons, 2016)

  2. L Kouwenhoven and C M Marcus, Phys. World 11, 35 (1998)

    Google Scholar 

  3. D Bimberg, M Grundmann and N N Ledentsov, Quantum dot heterostructures (Wiley, New York, 1999)

    Google Scholar 

  4. K Goser, P Glosekotter and V Dienstuhl, Nano electronics & nano systems (Springer, Berlin, 2004)

    Google Scholar 

  5. George W Hanson, Fundamentals of nanoelectronics (Pearson, London, 2011)

    Google Scholar 

  6. P S Peercy, Nature 406(6799), 1023 (2000)

    Google Scholar 

  7. A Steane, Rep. Prog. Phys. 61, 117 (1998)

    ADS  MathSciNet  Google Scholar 

  8. D Deutsch, Proc. R. Soc. Lond. A 400, 97 (1985)

    ADS  Google Scholar 

  9. D Loss and D P DiVincenzo, Phys. Rev. A 57, 120 (1998)

    ADS  Google Scholar 

  10. D D Awschalom, D Loss and N Samarth, Semiconductor spintronics and quantum computation (Springer, Berlin, Heidelberg, 2002)

    Google Scholar 

  11. J M Elzerman et al, Nature 430, 431 (2004)

    ADS  Google Scholar 

  12. R Hanson, L P Kouwenhoven, J R Petta, S Tarucha, L M K Vandersypen, Rev. Mod. Phys. 79, 1217 (2007)

    ADS  Google Scholar 

  13. Peter Lodahl, Sahand Mahmoodian and Søren Stobbe, Rev. Mod. Phys. 87, 347 (2015)

    ADS  Google Scholar 

  14. S Stobbe, J Johansen, P T Kristensen, J M Hvam and P Lodahl, Phys. Rev. B 80, 155307 (2009)

    ADS  Google Scholar 

  15. Q Wang, S Stobbe and P Lodahl, Phys. Rev. Lett. 107, 167404 (2011)

    ADS  Google Scholar 

  16. J L O’Brien, A Furusawa and J Vuckovic, Nature Photon. 3, 687 (2009)

    ADS  Google Scholar 

  17. R Khordad and B Mirhosseini, Pramana – J. Phys. 85, 723 (2015)

  18. Ankhi Maiti and Sagarika Bhattacharyya, Int. J. Chem. Chem. Eng. 3, 37 (2013)

    Google Scholar 

  19. X Michalet et al, Science 307, 5709 (2005)

    Google Scholar 

  20. H M Azzazy, M M Mansour and S C Kazmierczak, Clinical Biochem. 40, 917 (2007)

    Google Scholar 

  21. W G van der Wiel, S De Franceschi, J M Elzerman, T Fujisawa, S Tarucha and L P Kouwenhoven, Rev. Mod. Phys. 75, 101 (2003)

    Google Scholar 

  22. W Izumida, O Sakai and S Suzuki, J. Phys. Soc. Jpn 70, 1045 (2001)

    ADS  Google Scholar 

  23. G Chen, G Klimeck and S Dutta, Phys. Rev. B 50, 8035 (1994)

    ADS  Google Scholar 

  24. C A Stafford and S Das Sarma, Phys. Rev. Lett. 72, 3590 (1994)

    ADS  Google Scholar 

  25. Shyam Chand, G Rajput, K C Sharma and P K Ahluwalia, Pramana – J. Phys. 72, 887 (2009)

    ADS  Google Scholar 

  26. W Izumida and O Sakai, Phys. Rev. B 62, 10260 (2000)

    ADS  Google Scholar 

  27. T Aonu and M Eto, Phys. Rev. B 63, 125327 (2001)

    ADS  Google Scholar 

  28. R Aguado and D C Langreth, Phys. Rev. Lett. 85, 1946 (2000)

    ADS  Google Scholar 

  29. D Goldhaber-Gordon et al, Phys. Rev. Lett. 81, 5225 (1998)

    ADS  Google Scholar 

  30. H Grabert and M H Devoret, Single charge tunnelling (Plenum Press, New York, 1992)

    Google Scholar 

  31. M A Kastner, Rev. Mod. Phys. 64, 849 (1992)

    ADS  Google Scholar 

  32. K Kobayashi, H Aikawa, S Katusmoto and Y Iye, Phys. Rev. Lett. 88, 1 (2002)

    Google Scholar 

  33. P A Orellana, M L Ladron de Guevera and F Claro, Phys. Rev. B 70, 233315 (2004)

    ADS  Google Scholar 

  34. M L Ladron de Guevara, F Carlo and P A Orellana, Phys. Rev. B 67, 195335 (2003)

    ADS  Google Scholar 

  35. T Vorrath and T Brandes, Phys. Rev. B 68, 035309 (2003)

    ADS  Google Scholar 

  36. E Vernek, P A Orellana and S E Ulloa, Phys. Rev. B 82, 165304 (2010)

    ADS  Google Scholar 

  37. J D Pillet, C H L Quay, P Morfin, C Bena, A Levy Yeyati and P Joyez, Nat. Phys. 6, 965 (2010)

    Google Scholar 

  38. S De Franceschi, L Kouwenhoven, C Schonenberger and W Wernsdorfer, Nat. Nanotechnol. 5, 703 (2010)

    ADS  Google Scholar 

  39. G Rajput, R Kumar and Ajay, Superlatt. Microstruct. 73, 193 (2014)

    ADS  Google Scholar 

  40. D A Eremin, E N Grishanov, I Y Popov and A A Boitsev, Pramana – J. Phys. 92: 95 (2019)

  41. G Klimeck, G Chen and S Datta, Phys. Rev. B 50, 2316 (1994)

    ADS  Google Scholar 

  42. K Wrześniewski and I Weymann, Phys. Rev. B 92, 045407 (2015)

    ADS  Google Scholar 

  43. J Cai and G D Mahan, Phys. Rev. B 78, 035115 (2008)

    ADS  Google Scholar 

  44. B H Teng, H K Sy, Z C Wang,Y Q Sun and H C Yang, Phys. Rev. B 75, 012105 (2007)

    ADS  Google Scholar 

  45. W Z Shangguan, T C A Yeung, Y B Yu and C H Kam, Phys. Rev. B 63, 235323 (2001)

    ADS  Google Scholar 

  46. Y Han, W-J Gong, H-M Wang and A Du, J. Appl. Phys. 112, 123701 (2012)

    ADS  Google Scholar 

  47. F R Braakman, P Barthelemy, C Reich, W Wegscheider and L M K Vandersypen, Nature Nanotechnol. 67, 2 (2013)

    Google Scholar 

  48. W Wang, J Liao, J Sun and N Gu, Superlatt. Microstruct. 44, 721 (2008)

    ADS  Google Scholar 

  49. V P Kunets, M Rebello Sousa Dias, T Rembert, M E Ware, Yu I Mazur, V Lopez-Richard, H A Mantooth, G E Marques and G J Salamo, J. Appl. Phys. 113, 183709 (2013)

    ADS  Google Scholar 

  50. K G Wilson, Rev. Mod. Phys. 47, 773 (1975)

    ADS  Google Scholar 

  51. L V Keldysh, Zh. Eksp. Teor. Fiz. 47, 1515 (1964); [Sov. Phys. JETP 20, 1018 (1965)]

  52. L P Kadanoff and G Baym, Quantum statistical mechanics (Benjamin, New York, 1962)

    MATH  Google Scholar 

  53. C Caroli, R Combescot, P Nozieres and D Saint-James, J. Phys. C 4, 916 (1971)

    ADS  Google Scholar 

  54. G D Mahan, Many particle physics (Plenum Press, New York, 2000)

    Google Scholar 

  55. D N Zubarev, Sov. Phys. Usp. 3, 320 (1960); H Haug and A P Jauho, Quantum kinetics in transport and optics of semiconductors (Springer, New York, 2008)

  56. C Lacroix, J. Phys. F 11, 2389 (1981)

    ADS  Google Scholar 

  57. A P Jouho, N S Wingreen and Y Meir, Phys. Rev. B 50, 5528 (1994)

    ADS  Google Scholar 

  58. Y Meir and N S Wingreen, Phys. Rev. Lett. 68, 2512 (1992)

    ADS  Google Scholar 

  59. N S Wingreen and Y Meir, Phys. Rev. B 49, 11040 (1994)

    ADS  Google Scholar 

  60. C Niu, L Liu and T Lin, Phys. Rev. B 51, 5130 (1995)

    ADS  Google Scholar 

  61. S Lamba and S K Joshi, Phys. Rev. B 62, 1580 (2000)

    ADS  Google Scholar 

  62. J Q You and H Z Zheng, Phys. Rev. B 60, 13314 (1999)

    ADS  Google Scholar 

  63. A S Adourian, C Livermore and R M Westervelt, Appl. Phys. Lett. 75, 424 (1999)

    ADS  Google Scholar 

  64. L G Mourokh, N J M Horing and A Y Smirnov, Phys. Rev. B 66, 085332 (2002)

    ADS  Google Scholar 

  65. S Chand, R K Moudgil and P K Ahluwalia, Physica B 405, 239 (2010)

    ADS  Google Scholar 

  66. S Devi, B B Brogi, P K Ahluwalia and S Chand, Physica B 539, 111 (2018)

    ADS  Google Scholar 

  67. G Rajput, S Chand, P K Ahluwalia and K C Sharma, Physica B 405, 4323 (2010)

    ADS  Google Scholar 

  68. B B Brogi, S Chand and P K Ahluwalia, Physica B 461, 110 (2015)

    ADS  Google Scholar 

  69. A J Nozik, Physica E 14, 115 (2002)

    ADS  Google Scholar 

  70. P V Kamat, J. Phys. Chem. C 111, 2834 (2007)

    Google Scholar 

  71. H Li, T Lü and P Sun, Phys. Lett. A 343, 403 (2005)

    ADS  Google Scholar 

  72. Z-T Jiang and C-C Zhong, Chin. Phys. B 25, 67302 (2016)

    Google Scholar 

  73. C Volk et al, npj Quantum Information (2019)

  74. A R Mills, D M Zajac, M J Gullans, F J Schupp, T M Hazard and J R Petta, Nat. Commun. 10 (2019)

  75. Takumi Ito et al, Sci. Rep. 6, 39113 (2016)

    ADS  Google Scholar 

  76. R Vohra and R S Sawhney, Pramana – J. Phys. 90: 58 (2018)

  77. P W Anderson, Phys. Rev. 124, 41 (1961)

    ADS  MathSciNet  Google Scholar 

  78. Tae-Suk Kim and S Hershfield, Phys. Rev. B 63, 245326 (2001)

  79. X Q Wang, G Y Yi and W J Gung, Superlatt. Microstruct. 109, 366 (2017)

    ADS  Google Scholar 

  80. D Boese, W Hofstetter and H Schoeller, Phys. Rev. B 66, 125315 (2002)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sushila Devi.

Appendices

Appendix A

1.1 A.1 Equations of motion for Green’s functions of dots

(a) For the single quantum dot

$$\begin{aligned}&\omega \langle \langle c_{\sigma },c_{\sigma }^{\dag }\rangle \rangle ^{r}=1+\varepsilon \langle \langle c_{\sigma },c_{\sigma }^{\dag }\rangle \rangle ^{r}\nonumber \\&\quad +U\langle \langle n_{-\sigma }c_{\sigma },c_{\sigma }^{\dag }\rangle \rangle ^{r}+V_{k}^{\mathrm{L}}{\langle \langle a}_{k\sigma },c_{\sigma }^{\dag }\rangle \rangle ^{r}\nonumber \\&\quad +V_{p}^{\mathrm{R}}{\langle \langle b}_{p\sigma },c_{\sigma }^{\dag }\rangle \rangle ^{r} \end{aligned}$$
(A.1)

Further,

$$\begin{aligned} \langle \langle a_{k\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r}=V_{k}^{\mathrm{L}*}g_{k}^{r}\langle \langle c_{\sigma },c_{\sigma }^{\dag }\rangle \rangle ^{r} \end{aligned}$$

and

$$\begin{aligned} \langle \langle b_{p\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r}=V_{p}^{\mathrm{R}*}g_{k}^{r}\langle \langle c_{\sigma },c_{\sigma }^{\dag }\rangle \rangle ^{r}. \end{aligned}$$

(b) For the double quantum dot in series

$$\begin{aligned}&\left( \omega -\epsilon _{1} \right) \langle \langle c_{1\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r}=1+V_{d}\langle \langle c_{2\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r}\nonumber \\&\quad +U_{1}\langle \langle c_{1\sigma }n_{1-\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r}+V_{k}^{\mathrm{L}}\langle \langle a_{k\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r} \end{aligned}$$
(A.2)
$$\begin{aligned}&\left( \omega -\epsilon _{2} \right) \langle \langle c_{2\sigma },c_{2\sigma }^{\dag }\rangle \rangle ^{r}=1+V_{d}^{\mathrm{*}}\langle \langle c_{1\sigma },c_{2\sigma }^{\dag }\rangle \rangle ^{r}\nonumber \\&\quad +U_{2}\langle \langle c_{2\sigma }n_{2-\sigma },c_{2\sigma }^{\dag }\rangle \rangle ^{r} +V_{p}^{\mathrm{R}}\langle \langle b_{p\sigma },c_{2\sigma }^{\dag }\rangle \rangle ^{r} \end{aligned}$$
(A.3)
$$\begin{aligned}&\left( \omega -\epsilon _{2} \right) \langle \langle c_{2\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r}=V_{d}^{\mathrm{*}}\langle \langle c_{1\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r}\nonumber \\&\quad +U_{2}\langle \langle c_{2\sigma }n_{2-\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r}+V_{p}^{\mathrm{R}}\langle \langle b_{p\sigma },c_{2\sigma }^{\dag }\rangle \rangle ^{r} \end{aligned}$$
(A.4)
$$\begin{aligned}&\left( \omega -\epsilon _{1} \right) \langle \langle c_{1\sigma },c_{2\sigma }^{\dag }\rangle \rangle ^{r}=V_{d}\langle \langle c_{2\sigma },c_{2\sigma }^{\dag }\rangle \rangle ^{r}\nonumber \\&\quad +U_{1}\langle \langle c_{1\sigma }n_{1-\sigma },c_{2\sigma }^{\dag }\rangle \rangle ^{r}+V_{k}^{\mathrm{L}}\langle \langle a_{k\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r}.\nonumber \\ \end{aligned}$$
(A.5)

Here

$$\begin{aligned} \langle \langle a_{k\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r}=V_{k1}^{\mathrm{L}*}g_{k}^{r}\langle \langle c_{1\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r} \end{aligned}$$

and

$$\begin{aligned} \langle \langle b_{p\sigma },c_{1\sigma }^{\dag }{\rangle \rangle }^{r}=V_{p2}^{\mathrm{R}*}g_{k}^{r}\langle \langle c_{2\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r}. \end{aligned}$$

(c) For the double quantum dot in parallel

$$\begin{aligned}&\left( \omega -\epsilon _{1} \right) \langle \langle c_{1\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r}=1+V_{d}\langle \langle c_{2\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r}\nonumber \\&\qquad +U_{1}\langle \langle c_{1\sigma }n_{1-\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r}+V_{k1}^{\mathrm{L}}\langle \langle a_{k\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r} \nonumber \\&\qquad +V_{p1}^{\mathrm{R}}\langle \langle b_{p\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{{r}} \end{aligned}$$
(A.6)
$$\begin{aligned}&\left( \omega -\epsilon _{1}-n_{1}U_{1} \right) \langle \langle c_{1\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r}=1+V_{d}\langle \langle c_{2\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r}\nonumber \\&\qquad +V_{k1}^{\mathrm{L}}\langle \langle a_{k\sigma },c_{1\sigma }^{\dag }{\rangle \rangle }^{{r}}+V_{p1}^{\mathrm{R}}\langle \langle b_{p\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r} \end{aligned}$$
(A.7)
$$\begin{aligned}&\left( \omega -\epsilon _{1}-n_{1}U_{1}-i\frac{\Gamma _{11}}{2} \right) \langle \langle c_{1\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r}\nonumber \\&\quad =1+V_{d}\langle \langle c_{2\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r}+i\frac{\Gamma _{12}}{2}\langle \langle c_{2\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r} \end{aligned}$$
(A.8)
$$\begin{aligned}&\left( \omega -\epsilon _{2}-n_{2}U_{2}-i\frac{\Gamma _{22}}{2} \right) \langle \langle c_{2\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r}\nonumber \\&\quad =V_{d}\langle \langle c_{1\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r}+i\frac{\Gamma _{21}}{2}\langle \langle c_{1\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r} \end{aligned}$$
(A.9)
$$\begin{aligned}&\left( \omega -\epsilon _{2}-n_{2}U_{2}-i\frac{\Gamma _{22}}{2} \right) \langle \langle c_{2\sigma },c_{2\sigma }^{\dag }\rangle \rangle ^{r}\nonumber \\&\quad =1+V_{d}\langle \langle c_{1\sigma },c_{2\sigma }^{\dag }\rangle \rangle ^{r}+i\frac{\Gamma _{21}}{2}\langle \langle c_{1\sigma },c_{2\sigma }^{\dag }\rangle \rangle ^{r} \end{aligned}$$
(A.10)
$$\begin{aligned}&\left( \omega -\epsilon _{1}-n_{1}U_{1} \right) \langle \langle c_{1\sigma },c_{2\sigma }^{\dag }\rangle \rangle ^{r}\nonumber \\&\quad =1+V_{d}\langle \langle c_{2\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r}+V_{k1}^{\mathrm{L}}\langle \langle a_{k\sigma },c_{2\sigma }^{\dag }\rangle \rangle ^{r}\nonumber \\&\qquad +V_{p1}^{\mathrm{R}}\langle \langle b_{p\sigma },c_{2\sigma }^{\dag }\rangle \rangle ^{r} \end{aligned}$$
(A.11)
$$\begin{aligned}&\left( \omega -\epsilon _{1}-n_{1}U_{1}-i\frac{\Gamma _{11}}{2} \right) \langle \langle c_{1\sigma },c_{2\sigma }^{\dag }\rangle \rangle ^{r}\nonumber \\&\qquad =1+V_{d}\langle \langle c_{2\sigma },c_{2\sigma }^{\dag }\rangle \rangle ^{r}+i\frac{\Gamma _{12}}{2}\langle \langle c_{2\sigma },c_{2\sigma }^{\dag }\rangle \rangle ^{r}.\nonumber \\ \end{aligned}$$
(A.12)

The Green’s functions \(\langle \langle a_{k\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r}\) and \(\langle \langle b_{p\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r}\) arise due to the tunnelling of electrons between dots and leads. The EOM for these gives the following Dyson equations:

$$\begin{aligned} \langle \langle a_{k\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r}= & {} V_{k1}^{\mathrm{L}*}g_{k}^{\mathrm{r}}\langle \langle c_{1\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r}\\&+V_{k2}^{\mathrm{L}*}g_{k}^{r}\langle \langle c_{2\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r}\\ \langle \langle b_{p\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r}= & {} V_{p1}^{\mathrm{R}*}g_{k}^{r}\langle \langle c_{1\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r}\\&+V_{p2}^{\mathrm{R}*}g_{k}^{r}\langle \langle c_{2\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r}. \end{aligned}$$

(d) For the triple quantum dots in series

$$\begin{aligned}&\left( \omega -\epsilon _{1} \right) \langle \langle c_{1\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r}=1+V_{d}\langle \langle c_{2\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r}\nonumber \\&\quad +U_{1}\langle \langle c_{1\sigma }n_{1-\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r}+V_{k}^{\mathrm{L}}\langle \langle a_{k\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r} \end{aligned}$$
(A.13)
$$\begin{aligned}&\left( \omega -\epsilon _{2} \right) \langle \langle c_{2\sigma },c_{2\sigma }^{\dag }\rangle \rangle ^{r}=1+V_{d}^{*}\langle \langle c_{1\sigma },c_{2\sigma }^{\dag }\rangle \rangle ^{r}\nonumber \\&\quad +V_{d}\langle \langle c_{3\sigma },c_{2\sigma }^{\dag }\rangle \rangle ^{r}+U_{2}\langle \langle c_{2\sigma }n_{2-\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r}\end{aligned}$$
(A.14)
$$\begin{aligned}&\left( \omega -\epsilon _{3} \right) \langle \langle c_{3\sigma },c_{3\sigma }^{\dag }\rangle \rangle ^{r}=1+V_{d}^{*}\langle \langle c_{2\sigma },c_{3\sigma }^{\dag }\rangle \rangle ^{r}\nonumber \\&\quad +U_{3}\langle \langle c_{3\sigma }n_{3-\sigma },c_{3\sigma }^{\dag }\rangle \rangle ^{r}+V_{p}^{\mathrm{R}}\langle \langle b_{p\sigma },c_{3\sigma }^{\dag }\rangle \rangle ^{r} \end{aligned}$$
(A.15)
$$\begin{aligned}&\left( \omega -\epsilon _{1} \right) \langle \langle c_{1\sigma },c_{2\sigma }^{\dag }\rangle \rangle ^{r}=V_{d}\langle \langle c_{2\sigma },c_{2\sigma }^{\dag }\rangle \rangle ^{r}\nonumber \\&\quad +U_{1}\langle \langle c_{1\sigma }n_{1-\sigma },c_{2\sigma }^{\dag }\rangle \rangle ^{r}+V_{k}^{\mathrm{L}}\langle \langle a_{k\sigma },c_{2\sigma }^{\dag }\rangle \rangle ^{r}\end{aligned}$$
(A.16)
$$\begin{aligned}&\left( \omega -\epsilon _{1} \right) \langle \langle c_{1\sigma },c_{3\sigma }^{\dag }\rangle \rangle ^{r}=V_{d}\langle \langle c_{2\sigma },c_{3\sigma }^{\dag }\rangle \rangle ^{r}\nonumber \\&\quad +U_{1}\langle \langle c_{1\sigma }n_{1-\sigma },c_{3\sigma }^{\dag }\rangle \rangle ^{r}+V_{k}^{\mathrm{L}}\langle \langle a_{k\sigma },c_{3\sigma }^{\dag }\rangle \rangle ^{r}\end{aligned}$$
(A.17)
$$\begin{aligned}&\left( \omega -\epsilon _{2} \right) \langle \langle c_{2\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r}=V_{d}^{*}\langle \langle c_{1\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r}\nonumber \\&\quad +V_{d}\langle \langle c_{3\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r}+U_{2}\langle \langle c_{2\sigma }n_{2-\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r}\end{aligned}$$
(A.18)
$$\begin{aligned}&\left( \omega -\epsilon _{2} \right) \langle \langle c_{2\sigma },c_{3\sigma }^{\dag }\rangle \rangle ^{r}=V_{\mathrm{d}}^{\mathrm{*}}\langle \langle c_{1\sigma },c_{3\sigma }^{\dag }\rangle \rangle ^{r}\nonumber \\&\quad +V_{d}\langle \langle c_{3\sigma },c_{3\sigma }^{\dag }\rangle \rangle ^{r}+U_{2}\langle \langle c_{2\sigma }n_{2-\sigma },c_{3\sigma }^{\dag }\rangle \rangle ^{r} \end{aligned}$$
(A.19)
$$\begin{aligned}&\left( \omega -\epsilon _{3} \right) \langle \langle c_{3\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r}=V_{d}^{*}\langle \langle c_{2\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r}\nonumber \\&\quad +U_{3}\langle \langle c_{3\sigma }n_{3-\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r}+V_{p}^{\mathrm{R}}\langle \langle b_{p\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r}\end{aligned}$$
(A.20)
$$\begin{aligned}&\left( \omega -\epsilon _{3} \right) \langle \langle c_{3\sigma },c_{2\sigma }^{\dag }\rangle \rangle ^{r}=V_{d}^{*}\langle \langle c_{2\sigma },c_{2\sigma }^{\dag }\rangle \rangle ^{r}\nonumber \\&\quad +U_{3}\langle \langle c_{3\sigma }n_{3-\sigma },c_{2\sigma }^{\dag }\rangle \rangle ^{r}+V_{p}^{\mathrm{R}}\langle \langle b_{p\sigma },c_{2\sigma }^{\dag }\rangle \rangle ^{r}. \end{aligned}$$
(A.21)

The Dyson equations for lead-dot GFs in series combination are

$$\begin{aligned} \langle \langle a_{k\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r}=V_{k1}^{\mathrm{L}*}g_{k}^{r}\langle \langle c_{1\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r} \end{aligned}$$

and

$$\begin{aligned} \langle \langle b_{p\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r}=V_{p3}^{\mathrm{R}*}g_{k}^{\mathrm{r}}\langle \langle c_{3\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r}. \end{aligned}$$

(e) For the triple quantum dots in parallel

$$\begin{aligned}&\left( \omega -\epsilon _{1} \right) \langle \langle c_{1\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r}=1+V_{d}\langle \langle c_{2\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r}\nonumber \\&\qquad +U_{1}\langle \langle c_{1\sigma }n_{1-\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r}+V_{k1}^{\mathrm{L}}\langle \langle a_{k\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r}\nonumber \\&\qquad +V_{p1}^{\mathrm{R}}\langle \langle b_{p\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r}\end{aligned}$$
(A.22)
$$\begin{aligned}&\left( \omega -\epsilon _{2} \right) \langle \langle c_{2\sigma },c_{2\sigma }^{\dag }\rangle \rangle ^{r}=1+V_{d}^{*}\langle \langle c_{1\sigma },c_{2\sigma }^{\dag }\rangle \rangle ^{r}\nonumber \\&\qquad +V_{d}\langle \langle c_{3\sigma },c_{2\sigma }^{\dag }\rangle \rangle ^{r}+V_{k2}^{\mathrm{L}}\langle \langle a_{k\sigma },c_{2\sigma }^{\dag }\rangle \rangle ^{r} \nonumber \\&\qquad +U_{2}\langle \langle c_{2\sigma }n_{2-\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{{r}}+ V_{p2}^{\mathrm{R}}\langle \langle b_{p\sigma },c_{2\sigma }^{\dag }\rangle \rangle ^{r}\end{aligned}$$
(A.23)
$$\begin{aligned}&\left( \omega -\epsilon _{3} \right) \langle \langle c_{3\sigma },c_{3\sigma }^{\dag }\rangle \rangle ^{r}=1+V_{d}^{*}\langle \langle c_{2\sigma },c_{3\sigma }^{\dag }\rangle \rangle ^{r}\nonumber \\&\qquad +U_{3}\langle \langle c_{3\sigma }n_{3-\sigma },c_{3\sigma }^{\dag }{\rangle \rangle }^{{r}}+V_{k3}^{\mathrm{L}}\langle \langle a_{k\sigma },c_{3\sigma }^{\dag }\rangle \rangle ^{r}\nonumber \\&\qquad +V_{p3}^{\mathrm{R}}\langle \langle b_{p\sigma },c_{3\sigma }^{\dag }\rangle \rangle ^{r}\end{aligned}$$
(A.24)
$$\begin{aligned}&\left( \omega -\epsilon _{1} \right) \langle \langle c_{1\sigma },c_{2\sigma }^{\dag }\rangle \rangle ^{r}=V_{\mathrm{d}}\langle \langle c_{2\sigma },c_{2\sigma }^{\dag }\rangle \rangle ^{r}\nonumber \\&\qquad +U_{1}\langle \langle c_{1\sigma }n_{1-\sigma },c_{2\sigma }^{\dag }\rangle \rangle ^{r}+V_{k1}^{\mathrm{L}}\langle \langle a_{k\sigma },c_{2\sigma }^{\dag }\rangle \rangle ^{r}\nonumber \\&\qquad +V_{p1}^{\mathrm{R}}\langle \langle b_{p\sigma },c_{2\sigma }^{\dag }\rangle \rangle ^{r}\end{aligned}$$
(A.25)
$$\begin{aligned}&\left( \omega -\epsilon _{2} \right) \langle \langle c_{2\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r}=V_{d}^{*}\langle \langle c_{2\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r}\nonumber \\&\qquad +V_{d}\langle \langle c_{3\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r}+U_{2}\langle \langle c_{2\sigma }n_{2-\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r}\nonumber \\&\qquad + V_{p2}^{\mathrm{R}}\langle \langle b_{p\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{{r}}+ V_{k2}^{\mathrm{L}}\langle \langle a_{k\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r}\end{aligned}$$
(A.26)
$$\begin{aligned}&\left( \omega -\epsilon _{3} \right) \langle \langle c_{3\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r}=V_{d}^{*}\langle \langle c_{2\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r}\nonumber \\&\qquad +U_{3}\langle \langle c_{3\sigma }n_{3-\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r}+V_{k3}^{\mathrm{L}} \langle \langle a_{k\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r}\nonumber \\&\qquad +V_{p3}^{\mathrm{R}}\langle \langle b_{p\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r}\end{aligned}$$
(A.27)
$$\begin{aligned}&\left( \omega -\epsilon _{1} \right) \langle \langle c_{1\sigma },c_{3\sigma }^{\dag }\rangle \rangle ^{r}=V_{d}\langle \langle c_{2\sigma },c_{3\sigma }^{\dag }\rangle \rangle ^{r}\nonumber \\&\qquad +U_{1}\langle \langle c_{1\sigma }n_{1-\sigma },c_{3\sigma }^{\dag }\rangle \rangle ^{r}+V_{k1}^{\mathrm{L}}\langle \langle a_{k\sigma },c_{3\sigma }^{\dag }\rangle \rangle ^{r}\nonumber \\&\qquad +V_{p1}^{\mathrm{R}}\langle \langle b_{p\sigma },c_{3\sigma }^{\dag }\rangle \rangle ^{r}\end{aligned}$$
(A.28)
$$\begin{aligned}&\left( \omega -\epsilon _{2} \right) \langle \langle c_{2\sigma },c_{3\sigma }^{\dag }\rangle \rangle ^{r}=V_{d}^{*}\langle \langle c_{1\sigma },c_{3\sigma }^{\dag }\rangle \rangle ^{r}\nonumber \\&\qquad +V_{d}\langle \langle c_{3\sigma },c_{3\sigma }^{\dag }\rangle \rangle ^{r}+U_{2}\langle \langle c_{2\sigma }n_{2-\sigma },c_{3\sigma }^{\dag }\rangle \rangle ^{r}\nonumber \\&\qquad + V_{p2}^{\mathrm{R}}\langle \langle b_{p\sigma },c_{3\sigma }^{\dag }\rangle \rangle ^{r}+ V_{k2}^{\mathrm{L}}\langle \langle a_{k\sigma },c_{3\sigma }^{\dag }\rangle \rangle ^{r}\end{aligned}$$
(A.29)
$$\begin{aligned}&\left( \omega -\epsilon _{3} \right) \langle \langle c_{3\sigma },c_{2\sigma }^{\dag }\rangle \rangle ^{r}=V_{d}^{*}\langle \langle c_{2\sigma },c_{2\sigma }^{\dag }\rangle \rangle ^{r}\nonumber \\&\qquad +U_{3}\langle \langle c_{3\sigma }n_{3-\sigma },c_{2\sigma }^{\dag }\rangle \rangle ^{r}+V_{k3}^{\mathrm{L}}\langle \langle a_{k\sigma },c_{2\sigma }^{\dag }\rangle \rangle ^{r}\nonumber \\&\qquad +V_{p3}^{\mathrm{R}}\langle \langle b_{p\sigma },c_{2\sigma }^{\dag }\rangle \rangle ^{r}\end{aligned}$$
(A.30)
$$\begin{aligned}&\left( \omega -\epsilon _{1}-n_{1}U_{1}-i\frac{\Gamma _{11}}{2} \right) \langle \langle c_{1\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r}\nonumber \\&\qquad =1+V_{d}\langle \langle c_{2\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r}+i\frac{\Gamma _{\mathrm{12}}}{2}\langle \langle c_{2\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r}\nonumber \\&\qquad + i\frac{\Gamma _{\mathrm{13}}}{2}\langle \langle c_{3\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r}\end{aligned}$$
(A.31)
$$\begin{aligned}&\left( \omega -\epsilon _{2}-n_{2}U_{2}-i\frac{\Gamma _{22}}{2} \right) \langle \langle c_{2\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r}\nonumber \\&\quad =V_{d}\langle \langle c_{1\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r}+i\frac{\Gamma _{21}}{2}\langle \langle c_{1\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r}\end{aligned}$$
(A.32)
$$\begin{aligned}&\left( \omega -\epsilon _{3}-n_{3}U_{3}-i\frac{\Gamma _{33}}{2} \right) \langle \langle c_{3\sigma },c_{3\sigma }^{\dag }\rangle \rangle ^{r}\nonumber \\&\qquad =1+V_{d}\langle \langle c_{2\sigma },c_{3\sigma }^{\dag }\rangle \rangle ^{r}+i\frac{\Gamma _{32}}{2}\langle \langle c_{2\sigma },c_{3\sigma }^{\dag }\rangle \rangle ^{r}.\nonumber \\ \end{aligned}$$
(A.33)

The EOM for lead-dot coupling GFs are given by following Dyson equations:

$$\begin{aligned} \langle \langle a_{k\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r}= & {} V_{k1}^{\mathrm{L}*}g_{k}^{r}\langle \langle c_{1\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r}\\&+V_{k2}^{\mathrm{L}*}g_{k}^{{r}}\langle \langle c_{2\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r}\\&+V_{k3}^{\mathrm{L}*}g_{k}^{r}\langle \langle c_{3\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r}\\ \langle \langle b_{p\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r}= & {} V_{p1}^{\mathrm{R}*}g_{{k}}^{r}{\langle \langle }c_{1\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r}\\&+V_{p2}^{\mathrm{R}*}g_{k}^{r}\langle \langle c_{2\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r}\\&+V_{p3}^{\mathrm{R}*}g_{k}^{{r}}\langle \langle c_{3\sigma },c_{1\sigma }^{\dag }\rangle \rangle ^{r}. \end{aligned}$$

The GFs of QDs in various configurations can be obtained by using the simplest mean-field approximation, such that GFs of the type \(\langle \langle c_{i\sigma }n_{i-\sigma },c_{j\sigma }^{\dag }{\rangle \rangle }^{{r}}\approx n_{i-\sigma }\langle \langle c_{i\sigma },c_{j\sigma }^{\dag }{\rangle \rangle }^{{r}}\) and hierarchy of GFs in the above EOMs get closed to the final forms of the respective GFs.

Appendix B

1.1 B.1 Current

To discuss the method for deriving relation for the total current, we take the case of parallel double quantum dot system. The expression for the current due to the left lead is

$$\begin{aligned}&I_{\mathrm{L}}=\frac{e}{h}\mathop {\sum }\limits _{ki\sigma } \int {\left( V_{ki}^{\mathrm{L}}\langle \langle a_{k\sigma },c_{i\sigma }^{\dag }\rangle \rangle _{\omega }^{<}-V_{ki}^{\mathrm{L}*}\langle \langle c_{k\sigma },a_{i\sigma }^{\dag }\rangle \rangle _{\omega }^{<} \right) \mathrm {d}\omega } \nonumber \\&\quad \quad (i =1, 2). \end{aligned}$$
(B.1)

Similarly, the current due to the right lead can be written as

$$\begin{aligned}&I_{\mathrm{R}}=\frac{e}{h}\mathop {\sum }\limits _{pi\sigma } \int {\left( V_{pi}^{\mathrm{R}}\langle \langle b_{p\sigma },c_{i\sigma }^{\dag }\rangle \rangle _{\omega }^{<}-V_{pi}^{\mathrm{R}*}\langle \langle c_{k\sigma },b_{i\sigma }^{\dag }\rangle \rangle _{\omega }^{<} \right) \mathrm {d}\omega } \nonumber \\&\quad \quad (i=1, 2). \end{aligned}$$
(B.2)

The Dyson equations for the GFs appearing in these expressions are

$$\begin{aligned}&\langle \langle a_{k\sigma },c_{1\sigma }^{\dag }\rangle \rangle _{\omega }^{<}\nonumber \\&\quad =V_{k1}^{\mathrm{L}*}g_{k}^{{r}}\langle \langle c_{1\sigma },c_{1\sigma }^{\dag }\rangle \rangle _{\omega }^{<}+V_{k1}^{\mathrm{L}*}g_{k}^{<}\langle \langle c_{1\sigma },c_{1\sigma }^{\dag }\rangle \rangle _{\omega }^{a}\nonumber \\&\qquad + {V}_{k2}^{\mathrm{L}*}g_{k}^{{r}}\langle \langle c_{2\sigma },c_{1\sigma }^{\dag }\rangle \rangle _{\omega }^{<}+V_{k2}^{\mathrm{L}*}g_{k}^{<}\langle \langle c_{2\sigma },c_{1\sigma }^{\dag }\rangle \rangle _{\omega }^{a}\nonumber \\&\langle \langle a_{k\sigma },c_{2\sigma }^{\dag }\rangle \rangle _{\omega }^{<}\nonumber \\&\quad =V_{k2}^{\mathrm{L}*}g_{k}^{{r}}\langle \langle c_{2\sigma },c_{2\sigma }^{\dag }\rangle \rangle _{\omega }^{<}+V_{k2}^{\mathrm{L}*}g_{k}^{<}\langle \langle c_{2\sigma },c_{2\sigma }^{\dag }\rangle \rangle _{\omega }^{a}\nonumber \\&\qquad + {{V}}_{{k1}}^{\mathrm{L}*}g_{k}^{{r}}\langle \langle c_{1\sigma },c_{2\sigma }^{\dag }\rangle \rangle _{\omega }^{<}+V_{k1}^{\mathrm{L}*}g_{k}^{<}\langle \langle c_{1\sigma },c_{2\sigma }^{\dag }\rangle \rangle _{\omega }^{a}\nonumber \\&\langle \langle c_{1\sigma },a_{k\sigma }^{\dag }\rangle \rangle _{\omega }^{<}\nonumber \\&\quad =V_{k1}^{\mathrm{L}}g_{k}^{<}\langle \langle c_{1\sigma },c_{1\sigma }^{\dag }\rangle \rangle _{\omega }^{r}+V_{k1}^{\mathrm{L}}g_{k}^{a}\langle \langle c_{1\sigma },c_{1\sigma }^{\dag }\rangle \rangle _{\omega }^{<}\nonumber \\&\qquad + {V}_{k2}^{\mathrm{L}}g_{k}^{<}\langle \langle c_{2\sigma },c_{1\sigma }^{\dag }\rangle \rangle _{\omega }^{r}+V_{k2}^{\mathrm{L}}g_{k}^{a}\langle \langle c_{2\sigma },c_{1\sigma }^{\dag }\rangle \rangle _{\omega }^{<}\nonumber \\&\langle \langle c_{2\sigma },a_{k\sigma }^{\dag }\rangle \rangle _{\omega }^{<}\nonumber \\&\quad =V_{k2}^{\mathrm{L}}g_{k}^{<}\langle \langle c_{2\sigma },c_{2\sigma }^{\dag }\rangle \rangle _{\omega }^{r}+V_{k2}^{\mathrm{L}}g_{k}^{a}\langle \langle c_{2\sigma },c_{2\sigma }^{\dag }\rangle \rangle _{\omega }^{<}\nonumber \\&\qquad + {V}_{k1}^{\mathrm{L}}g_{k}^{<}\langle \langle c_{1\sigma },c_{2\sigma }^{\dag }{\rangle \rangle }_{{\omega }}^{r}+V_{k1}^{\mathrm{L}}g_{k}^{a}\langle \langle c_{1\sigma },c_{2\sigma }^{\dag }\rangle \rangle _{\omega }^{<} \nonumber \\&I_{\mathrm{L}}=\frac{e}{h}\mathop {\sum }\limits _\sigma \int {i\mathrm {Tr}\left[ \Gamma ^{\mathrm{L}}G^{<}+f_{\mathrm{L}}\Gamma ^{\mathrm{L}}(G^{r}-G^{a}) \right] \mathrm {d}\omega } \end{aligned}$$
(B.3)
$$\begin{aligned}&I_{\mathrm{R}}=\frac{e}{h}\mathop {\sum }\limits _\sigma \int {i\mathrm {Tr}\left[ \Gamma ^{\mathrm{R}}G^{<}+f_{\mathrm{R}}\Gamma ^{\mathrm{R}}(G^{r}-G^{a}) \right] \mathrm{d}\omega .}\nonumber \\ \end{aligned}$$
(B.4)

Further,

$$\begin{aligned} I=I_{\mathrm{L}}=-I_{\mathrm{R}}=\frac{I_{\mathrm{L}}-\mathrm {I}_{\mathrm{R}}}{2}. \end{aligned}$$

The total current in the couple quantum dots is

$$\begin{aligned} I= & {} \frac{ie}{2h}\mathop {\sum }\limits _\sigma \int \mathrm {Tr}\left[ \left( \Gamma ^{\mathrm{L}}-\Gamma ^{\mathrm{R}} \right) G^{<}\right. \nonumber \\&\left. +({\Gamma ^{\mathrm{L}}f}_{\mathrm{L}}{-\Gamma ^{\mathrm{R}}f}_{\mathrm{R}})(G^{r}-G^{a}) \right] \mathrm {d}\omega . \end{aligned}$$
(B.5)

For the proportionate case

$$\begin{aligned} \Gamma ^{\mathrm{L}}=\lambda \Gamma ^{\mathrm{R}}\quad \hbox { and }\quad x=\frac{1}{1+\lambda }. \end{aligned}$$

The current can be written as \(I=xI_{\mathrm{L}}-(1-x)I_{\mathrm{R}}\). Hence,

$$\begin{aligned} I= & {} \frac{ie}{h}\mathop {\sum }\limits _\sigma \int (f_{\mathrm{L}}{-f}_{\mathrm{R}})\nonumber \\&\times \mathrm {Tr}\left[ \left( \frac{\Gamma ^{\mathrm{L}}\Gamma ^{\mathrm{R}}}{\Gamma ^{\mathrm{L}}-\Gamma ^{\mathrm{R}}} \right) (G^{r}-G^{a}) \right] \mathrm {d}\omega . \end{aligned}$$
(B.6)

Also, by making use of the identity \(G^{r}-G^{a}=-i\left( \Gamma ^{\mathrm{L}}-\Gamma ^{\mathrm{R}} \right) G^{r}G^{a}\), the expression for the total current leads to the following well-known Landauer–Buttiker current formula:

$$\begin{aligned} I= & {} \frac{e}{h}\mathop {\sum }\limits _\sigma \int {\left( f_{\mathrm{L}}-f_{\mathrm{R}} \right) \mathrm {Tr}\left( G^{a}\Gamma ^{\mathrm{R}}G^{{r}}\Gamma ^{\mathrm{L}} \right) \mathrm {d}\omega }\nonumber \\= & {} \frac{e}{h}\mathop {\sum }\limits _\sigma \int {\left( f_{\mathrm{L}}-f_{\mathrm{R}} \right) T\left( \omega \right) \mathrm {d}\omega }. \end{aligned}$$
(B.7)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devi, S., Ahluwalia, P.K. & Chand, S. A generalised approach to calculate various transport observables for a linear array of series and parallel quantum dots. Pramana - J Phys 94, 60 (2020). https://doi.org/10.1007/s12043-020-1927-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-020-1927-8

Keywords

PACS Nos

Navigation