Skip to main content
Log in

Identification of unique subtype-specific interaction features in Class II zinc-dependent HDAC subtype binding pockets: A computational study

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Zinc-dependent HDAC subtypes (ZnHDACs) exhibit differential expression in various cancer types and significantly contribute to oncogenic cell transformation, and hence are interesting anticancer drug targets. The approved pan HDAC inhibitors (PHIs) lack subtype specificity and inhibit all ZnHDACs, causing severe side-effects. Considering the distinct tissue distribution and roles of individual ZnHDACs in specific cancer types, it is crucial to rationally design subtype-specific inhibitors (SSIs) for enhanced efficacy and reduced side-effects. There are numerous approaches already conducted for designing SSIs, especially Class I ZnHDACs, whereas Class II and III ZnHDACs are relatively unexplored and equally important in disease pathogenesis. This study attempts to decipher the specificity rendering interaction features of six different ZnHDACs by robust analyses of reported experimental data employing sophisticated computational methods like homology modelling, docking, pharmacophore analysis, and molecular dynamic (MD) simulations. Experimentally validated SSIs (activity <1000 nM) of different ZnHDACs and 8 approved PHIs were docked to 40 MD generated conformations of each ZnHDACs followed by MM-GBSA binding energy estimations. Sequences, structures, physicochemical properties, and interaction patterns of the binding sites obtained from docking were exhaustively compared to identify unique subtype-specific interaction features for each Class II ZnHDACs. To further validate the stabilities of these features, 20 ns MD simulations were performed on 12 complexes (each Class II ZnHDACs bound to one SSI and one PHI) in explicit water models. Distinct pharmacophoric patterns were observed in the binding pockets of each subtype despite high sequence similarities. Presence of amides, ketone, hydroxyl, carboxyl groups, and moieties occupying additional sub-pockets and interacting with Zn 2+, etc., in the SSIs affect the orientations of the binding site residues (BSRs) owing to subtype-specific protein–ligand interactions. Stable and unique residue interactions specific for a HDAC subtype are, e.g. E329 for HDAC4, S904 for HDAC5, W496 S563 I569 for HDAC6, M793 for HDAC9, and E302 for HDAC10. Such unique interaction features and pharmacophoric patterns can be utilized for subtype-specific ZnHDAC inhibitor design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Ahn M-Y and Yoon J-H 2017 Histone deacetylase 8 as a novel therapeutic target in oral squamous cell carcinoma. Oncol. Rep. 37 540–546

    Article  PubMed  Google Scholar 

  • Agarwala R, Barrett T, Beck J, Benson DA, et al. 2018 Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 46 D8–D13

  • Androutsopoulos VP and Spandidos DA 2017 Antiproliferative effects of TSA, PXD-101 and MS-275 in A2780 and MCF7 cells: Acetylated histone H4 and acetylated tubulin as markers for HDACi potency and selectivity. Oncol. Rep. 38 3412–3418

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bandolik JJ, Hamacher A, Schrenk C, Weishaupt R and Kassack MU 2019 Class I-histone deacetylase (HDAC) inhibition is superior to pan-HDAC Inhibition in modulating cisplatin potency in high grade serous ovarian cancer cell lines. Int. J. Mol. Sci. 20 3052

    Article  CAS  PubMed Central  Google Scholar 

  • Bertrand P 2010 Inside HDAC with HDAC inhibitors. Eur. J. Med. Chem. 45 2095–2116

    Article  CAS  PubMed  Google Scholar 

  • Chang P, Weykamp M, Dennahy IS, Williams AM, Bhatti UF, et al. 2018 Histone deacetylase inhibitors: Isoform selectivity improves survival in a hemorrhagic shock model. J. Trauma Acute Care Surg. 84 795–801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhury C, Deva Priyakumar U and Sastry GN 2014 Molecular dynamics investigation of the active site dynamics of mycobacterial cyclopropane synthase during various stages of the cyclopropanation process. J. Struct. Biol. 187 38–48

    Article  CAS  PubMed  Google Scholar 

  • Choudhury C, Deva Priyakumar U and Narahari Sastry G 2016a Structural and Functional Diversities of the Hexadecahydro-1H-cyclopenta[a]phenanthrene Framework, a Ubiquitous Scaffold in Steroidal Hormones. Mol. Inform. 35 145–157

    Article  CAS  PubMed  Google Scholar 

  • Choudhury C, Priyakumar UD and Sastry GN 2016b Dynamic ligand-based pharmacophore modeling and virtual screening to identify mycobacterial cyclopropane synthase inhibitors. J. Chem. Sci. 128 719–732

    Article  CAS  Google Scholar 

  • Corminboeuf C, Hu P, Tuckerman ME and Zhang Y 2006 Unexpected deacetylation mechanism suggested by a density functional theory QM/MM study of histone-deacetylase-like protein. J. Am. Chem. Soc. 128 4530–4531

    Article  CAS  PubMed  Google Scholar 

  • Di Micco S, Chini MG, Terracciano S, Bruno I, Riccio R and Bifulco G 2013 Structural basis for the design and synthesis of selective HDAC inhibitors. Bioorg. Med. Chem. 21 3795–3807

    Article  PubMed  CAS  Google Scholar 

  • Dowling DP, Gantt SL, Gattis SG, Fierke CA and Christianson DW 2008 Structural studies of human histone deacetylase 8 and its site-specific variants complexed with substrate and inhibitors. Biochemistry 47 13554–13563

    Article  CAS  PubMed  Google Scholar 

  • Epik: a software program for pKa prediction and protonation state generation for drug-like molecules|SpringerLink. https://link.springer.com

  • Falkenberg KJ and Johnstone RW 2014 Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat. Rev. Drug Discov. 13 673–691

    Article  CAS  PubMed  Google Scholar 

  • Felisbino MB, Tamashiro WMSC and Mello MLS 2011 Chromatin remodeling, cell proliferation and cell death in valproic acid-treated HeLa cells. PLoS ONE 6 e29144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finnin MS, Donigian JR, Cohen A, Richon VM, Rifkind RA, et al. 1999 Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature 401 188–193

    Article  CAS  PubMed  Google Scholar 

  • Fournier J-F, Bhurruth-Alcor Y, Musicki B, Aubert J, Aurelly M, et al. 2018 Squaramides as novel class I and IIB histone deacetylase inhibitors for topical treatment of cutaneous t-cell lymphoma. Bioorg. Med. Chem. Lett. 28 2985–2992

    Article  CAS  PubMed  Google Scholar 

  • Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, et al. 2006 Extra Precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein−ligand complexes. J. Med. Chem. 49 6177–6196

    Article  CAS  PubMed  Google Scholar 

  • Ganai SA 2015 In silico approaches towards safe targeting of class i histone deacetylases; in Molecular Life Science (ed) RD Wells, JS Bond, J Klinman, BSS Masters and E Bell (New York, NY: Springer) pp 1–9

  • Ganai SA 2016 Novel approaches towards designing of isoform-selective inhibitors against class II histone deacetylases: the acute requirement for targetted anticancer therapy. Curr. Top. Med. Chem. 16 2441–5242

    Article  CAS  PubMed  Google Scholar 

  • Ganai SA 2018 Designing isoform-selective inhibitors against classical HDACs for effective anticancer therapy: insight and perspectives from in silico. Curr. Drug Targets. 19 815–824

    Article  CAS  PubMed  Google Scholar 

  • Gaulton A, Hersey A, Nowotka M, Bento AP, Chambers J, et al. 2017 The ChEMBL database in 2017. Nucleic Acids Res. 45 D945–D954

    Article  CAS  PubMed  Google Scholar 

  • Grant C, Rahman F, Piekarz R, Peer C, Frye R, et al. 2010 Romidepsin: a new therapy for cutaneous T-cell lymphoma and a potential therapy for solid tumors. Expert Rev. Anticancer Ther. 10 997–1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hai Y and Christianson DW 2016 Histone deacetylase 6 structure and molecular basis of catalysis and inhibition. Nat. Chem. Biol. 12 741–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassig CA, Tong JK, Fleischer TC, Owa T, Grable PG, et al. 1998 A role for histone deacetylase activity in HDAC1-mediated transcriptional repression. Proc. Natl. Acad. Sci. USA 95 3519–3524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ho TCS, Chan AHY and Ganesan A 2020 Thirty years of HDAC inhibitors: 2020 insight and hindsight. J. Med. Chem. 63 12460–12484

    Article  CAS  PubMed  Google Scholar 

  • Jacobson MP, Friesner RA, Xiang Z and Honig B 2002 On the role of the crystal environment in determining protein side-chain conformations. J. Mol. Biol. 320 597–608

    Article  CAS  PubMed  Google Scholar 

  • Kadosh D and Struhl K 1998 Histone deacetylase activity of Rpd3 is important for transcriptional repression in vivo. Genes Dev. 12 797–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalyaanamoorthy S and Chen YPP 2011 Structure-based drug design to augment hit discovery. Drug Discov. Today 16 831–839

    Article  CAS  PubMed  Google Scholar 

  • Kao HY, Downes M, Ordentlich P and Evans RM 2000 Isolation of a novel histone deacetylase reveals that class I and class II deacetylases promote SMRT-mediated repression. Genes Dev. 14 55–66

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khan N, Jeffers M, Kumar S, Hackett C, Boldog F, et al. 2008 Determination of the class and isoform selectivity of small-molecule histone deacetylase inhibitors. Biochem. J. 409 581–589

    Article  CAS  PubMed  Google Scholar 

  • Kim H-J and Bae S-C 2011 Histone deacetylase inhibitors: molecular mechanisms of action and clinical trials as anti-cancer drugs. Am. J. Transl. Res. 3 166–179

    CAS  PubMed  Google Scholar 

  • Lane AA and Chabner BA 2009 Histone deacetylase inhibitors in cancer therapy. J. Clin. Oncol. off. J. Am. Soc. Clin. Oncol. 27 5459–5468

    Article  CAS  Google Scholar 

  • Li Y and Seto E 2016 HDACs and HDAC inhibitors in cancer development and therapy. Cold Spring Harb. Perspect. Med. 6 a026831

  • LigPrep|Schrödinger (www.schrodinger.com)

  • Liu S-S, Wu F, Jin Y-M, Chang W-Q and Xu T-M 2020 HDAC11: a rising star in epigenetics. Biomed. Pharmacother.

  • Madeira F, Park YM, Lee J, Buso N, Gur T, et al. 2019 The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 47 W636–W641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Micelli C and Rastelli G 2015 Histone deacetylases: structural determinants of inhibitor selectivity. Drug Discov. Today. 20 718–735

    Article  CAS  PubMed  Google Scholar 

  • Mohan CG 2019 Structural Bioinformatics: Applications in Preclinical Drug Discovery Process (New York: Springer)

    Book  Google Scholar 

  • Parbin S, Kar S, Shilpi A, Sengupta D, Deb M, et al. 2014 Histone deacetylases: a saga of perturbed acetylation homeostasis in cancer. J. Histochem. Cytochem. off. J. Histochem. Soc. 62 11–33

    Article  CAS  Google Scholar 

  • Peng X, Liao G, Sun P, Yu Z and Chen J 2019 An overview of HDAC inhibitors and their synthetic routes. Curr. Top. Med. Chem. 19 1005–1040

    Article  CAS  PubMed  Google Scholar 

  • Ropero S and Esteller M 2007 The role of histone deacetylases (HDACs) in human cancer. Mol. Oncol. 1 19–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sastry GM, Adzhigirey M, Day T, Annabhimoju R and Sherman W 2013a Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided Mol. Des. 27 221–234

    Article  PubMed  CAS  Google Scholar 

  • Sastry GM, Adzhigirey M, Day T, Annabhimoju R and Sherman W 2013b Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided Mol. Des. 27 221–234

    Article  PubMed  CAS  Google Scholar 

  • Sborgi L, Verma A, Piana S, Lindorff-Larsen K, Cerminara M, et al. 2015 Interaction networks in protein folding via atomic-resolution experiments and long-time-scale molecular dynamics simulations. J. Am. Chem. Soc. 137 6506–6516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuetz A, Min J, Allali-Hassani A, Schapira M, Shuen M, et al. 2008 Human HDAC7 harbors a class IIa histone deacetylase-specific zinc binding motif and cryptic deacetylase activity. J. Biol. Chem. 283 11355–11363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh V and Dhar PK 2015 Systems and synthetic biology (Dordrecht: Springer)

    Book  Google Scholar 

  • Song Y, Lim J and Seo YH 2019 A novel class of anthraquinone-based HDAC6 inhibitors. Eur. J. Med. Chem. 164 263–272

    Article  CAS  PubMed  Google Scholar 

  • Stein RC 2001 Prospects for phosphoinositide 3-kinase inhibition as a cancer treatment. Endocr. Relat. Cancer. 8 237–248

    Article  CAS  PubMed  Google Scholar 

  • Taha TY, Aboukhatwa SM, Knopp RC, Ikegaki N, Abdelkarim H, et al. 2017 Design, synthesis, and biological evaluation of tetrahydroisoquinoline-based histone deacetylase 8 selective inhibitors. ACS Med. Chem. Lett. 8 824–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thaler F 2012 Current trends in the development of histone deacetylase inhibitors: a review of recent patent applications. Pharm. Pat. Anal. 1 75–90

    Article  CAS  PubMed  Google Scholar 

  • Thangapandian S, John S, Lee Y, Kim S and Lee KW 2011 Dynamic structure-based pharmacophore model development: a new and effective addition in the histone deacetylase 8 (HDAC8) inhibitor discovery. Int. J. Mol. Sci. 12 9440–9462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vannini A, Volpari C, Gallinari P, Jones P, Mattu M, et al. 2007 Substrate binding to histone deacetylases as shown by the crystal structure of the HDAC8-substrate complex. EMBO Rep. 8 879–884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner JM, Hackanson B, Lübbert M and Jung M 2010 Histone deacetylase (HDAC) inhibitors in recent clinical trials for cancer therapy. Clin. Epigenetics. 1 117–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang D-F, Helquist P, Wiech NL and Wiest O 2005 Toward selective histone deacetylase inhibitor design: homology modeling, docking studies, and molecular dynamics simulations of human class I histone deacetylases. J. Med. Chem. 48 6936–6947

    Article  CAS  PubMed  Google Scholar 

  • Wang X-X, Wan R-Z and Liu Z-P 2018 Recent advances in the discovery of potent and selective HDAC6 inhibitors. Eur. J. Med. Chem. 143 1406–1418

    Article  CAS  PubMed  Google Scholar 

  • Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, et al. 2018 SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46 W296–W303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • West AC and Johnstone RW 2014 New and emerging HDAC inhibitors for cancer treatment. J. Clin. Invest. 124 30–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, et al. 2018 DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 46 D1074–D1082

    Article  CAS  PubMed  Google Scholar 

  • Yang X-J and Grégoire S 2005 Class II histone deacetylases: from sequence to function, regulation, and clinical implication. Mol. Cell. Biol. 25 2873–2884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Qiu Q, Tang M, Wang F, Yi Y, et al. 2019 Purinostat Mesylate is a uniquely potent and selective inhibitor of HDACs for the treatment of BCR-ABL-induced B-cell acute lymphoblastic leukemia. Clin. Cancer Res. 25 7527–7539

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Shang Y-P, Chen H and Li J 2017 Histone deacetylases function as novel potential therapeutic targets for cancer. Hepatol. Res. 47 149–159

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chinmayee Choudhury.

Additional information

Communicated by Ravindra Venkatramani.

Corresponding editor: Ravindra Venkatramani

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8085 kb)

Supplementary file2 (XLSX 92 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ukey, S., Choudhury, C. & Sharma, P. Identification of unique subtype-specific interaction features in Class II zinc-dependent HDAC subtype binding pockets: A computational study. J Biosci 46, 71 (2021). https://doi.org/10.1007/s12038-021-00197-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12038-021-00197-9

Keywords

Navigation