Skip to main content
Log in

i-Process nucleosynthesis: Observational evidences from CEMP stars

  • Published:
Journal of Astrophysics and Astronomy Aims and scope Submit manuscript

Abstract

The surface chemical compositions of a large fraction of carbon-enhanced metal-poor (CEMP) stars, the so-called CEMP-r/s stars, are known to exhibit enhancement of both s-process and r-process elements. For these stars, the heavy-element abundances cannot be explained either by s-process or r-process nucleosynthesis alone, as the production sites of s-process and r-process elements are very different, and these two processes produce distinct abundance patterns. Thus, the observational evidence of the double enhancement seen in CEMP-r/s stars remains a puzzle as far as the origin of the elements is concerned. In this work, we have critically analysed the observed abundances of heavy elements in a sample of eight CEMP-r/s stars from the literature to trace the origin of the observed double enhancement. Towards this, we have conducted a parametric-model-based analysis to delineate the contributions of s-process and r-process nucleosynthesis to the observed elemental abundances. We have further examined if the i-process (intermediate-process) nucleosynthesis that occurs at high neutron density (n \({\sim }\,10^{15}\) cm\(^{-3}\)) produced during proton ingestion from a H-rich envelope to the intershell region of an AGB star, which is capable of producing both r-process and s-process elements in a single stellar site, could explain the observed abundance patterns of the sample stars. Our analysis shows that the observed abundance patterns of the selected sample of CEMP-r/s stars could be fairly well reproduced using the i-process model yields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

Notes

  1. Notation: [A/B] = log(N\(_{A}\)/N\(_{B}\))\(_{*}\) − log(N\(_{A}\)/N\(_{B}\))\(_{\odot }\), where N\(_{A}\) and N\(_{B}\) are number densities of elements A and B respectively.

References

  • Abate C., Pols O. R., Karakas A. I., Izzard R. G. 2015, A&A, 576, A118

    ADS  Google Scholar 

  • Abate C., Stancliffe R. J., Liu Z.-W. 2016, A&A, 587, A50

    ADS  Google Scholar 

  • Allen D. M., Ryan S. G., Rossi S., Beers T. C., Tsangarides S. A. 2012, A&A, 548, A34

    ADS  Google Scholar 

  • Aoki W., Beers T. C., Christlieb N., Norris J. E., Ryan S. G., Tsangarides, S. 2007, ApJ, 655, 492

    ADS  Google Scholar 

  • Aoki M., Ishimaru Y., Aoki W., Wanajo S. 2017, ApJ, 837, 8

    ADS  Google Scholar 

  • Aoki W., Suda T., Beers T. C., Honda S., 2015, AJ, 149, 39

    ADS  Google Scholar 

  • Arlandini C., Käppeler F., Wisshak K., et al. 1999, ApJ, 525, 886

    ADS  Google Scholar 

  • Beers T. C., Christlieb N. 2005, ARA&A, 43, 531

    ADS  Google Scholar 

  • Bisterzo S., Gallino R., Straniero O., Cristallo S., Kappeler F. 2011, MNRAS, 418, 284

    ADS  Google Scholar 

  • Bisterzo S., Gallino R., Straniero O., Cristallo S., Kappeler F. 2012, MNRAS, 422, 849

    ADS  Google Scholar 

  • Busso M., Gallino R., Wasserburg G. J. 1999, ARA&A, 37, 239

    ADS  Google Scholar 

  • Cohen J. G., Christlieb N., Qian Y.-Z., Wasserburg G. J. 2003, ApJ, 588, 1082

    ADS  Google Scholar 

  • Cowan J. J., Rose W. K. 1977, ApJ, 212, 149

    ADS  Google Scholar 

  • Dardelet L., Ritter C., Prado P., et al. 2014, in Proc. XIII Nuclei in the Cosmos Symp., ed. Z. Elekes, Z. Fülöp (Trieste: PoS), 145

  • Doherty C. L., Gil-Pons P., Siess L., Lattanzio J. C., Lau H. H. B. 2015, MNRAS, 446, 2599

    ADS  Google Scholar 

  • Fujimoto M. Y., Iben Jr. I., Hollowell D. 1990, ApJ, 349, 580

    ADS  Google Scholar 

  • Gallino R., Arlandini C., Busso M., Lugaro M., Travaglio C., Straniero O., Chieffi A., Limongi M. 1998, ApJ, 497, 388

    ADS  Google Scholar 

  • Goswami A., Aoki W. 2010, MNRAS, 404, 253

    ADS  Google Scholar 

  • Goswami A., Aoki W., Beers T. C., et al. 2006, MNRAS, 372, 343

    ADS  Google Scholar 

  • Goswami A., Athiray S. P., Karinkuzhi D. 2010, Astrophysics and Space Science Proceedings, 17, 211

    ADS  Google Scholar 

  • Hampel M., Karakas A. I., Stancliffe R. J., Meyer B. S., Lugaro M. 2019, ApJ, 887, 11

    ADS  Google Scholar 

  • Hampel M., Stancliffe R. J., Lugaro M., Meyer B. S. 2016, ApJ, 831, 171

    ADS  Google Scholar 

  • Hansen C. J., Hansen T. T., Koch A., et al. 2019, A&A, 623, A128

    ADS  Google Scholar 

  • Hill V., Barbuy B., Spite M., et al. 2000, A&A, 353, 557

    ADS  Google Scholar 

  • Iben Jr. I., Renzini A. 1983, ARA&A, 21, 271

    ADS  Google Scholar 

  • Ivans I. I., Sneden C., Gallino R., Cowan J. J., Preston G. W. 2005, ApJ, 627, L145

    ADS  Google Scholar 

  • Jones S., Ritter C., Herwig F., et al. 2016, MNRAS, 455, 3848

    ADS  Google Scholar 

  • Jonsell K., Barklem P. S., Gustafsson B., et al. 2006, A&A, 451, 651

    ADS  Google Scholar 

  • Lau H. H. B., Stancliffe R. J., Tout C. A. 2008, MNRAS, 385, 301

    ADS  Google Scholar 

  • Lucatello S., Gratton R. G., Beers T. C., Carretta E. 2005, ApJ, 625, 833

    ADS  Google Scholar 

  • Lugaro M., Campbell S. W., de Mink S. E. 2009, PASA, 26, 322

    ADS  Google Scholar 

  • Matrozis E., Stancliffe R. J. 2016, A&A, 592, A29

    ADS  Google Scholar 

  • Nomoto K., Sugimoto D., Neo S. 1976, Ap&SS, 39, L37

    ADS  Google Scholar 

  • Purandardas M., Goswami A., Goswami P. P., Shejeelammal J., Masseron T. 2019, MNRAS, 486, 3266

    ADS  Google Scholar 

  • Qian Y. Z., Wasserburg G. J. 2003, ApJ, 588, 1099

    ADS  Google Scholar 

  • Qian Y. Z., Woosley S. E. 1996, ApJ, 471, 331

    ADS  Google Scholar 

  • Richard O., Michaud G., Richer J., et al. 2002, ApJ, 568, 979

    ADS  Google Scholar 

  • Stancliffe R. J., Dearborn D. S. P., Lattanzio J. C., Heap S. A., Campbell S. W. 2011, ApJ, 742, 121

    ADS  Google Scholar 

  • Thielemann F.-K., Arcones A., Kappeli R., et al. 2011, PrPNP, 66, 346

    ADS  Google Scholar 

  • Tsuji T., Tomioka K., Sato H., Iye M., Okada T. 1991, A&A, 252, L1

    ADS  Google Scholar 

  • Wehmeyer B., Pignatari M., Thielemann F.-K. 2015, MNRAS, 452, 1970

    ADS  Google Scholar 

  • Zijlstra A. A. 2004, MNRAS, 348, L23

    ADS  Google Scholar 

Download references

Acknowledgements

Funding from the DST SERB project EMR/2016/005283 is gratefully acknowledged. We are thankful to Melanie Hampel for providing us with the i-process yields in the form of number fractions. This work made use of the SIMBAD astronomical database, operated at CDS, Strasbourg, France, and NASA ADS, USA.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Partha Pratim Goswami or Aruna Goswami.

Additional information

This article is part of the Topical Collection: Chemical elements in the Universe: Origin and evolution.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goswami, P.P., Goswami, A. i-Process nucleosynthesis: Observational evidences from CEMP stars. J Astrophys Astron 41, 47 (2020). https://doi.org/10.1007/s12036-020-09670-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12036-020-09670-7

Keywords

Navigation