Skip to main content

Advertisement

Log in

Inhibition of ASIC-Mediated Currents by Activation of Somatostatin 2 Receptors in Rat Dorsal Root Ganglion Neurons

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Somatostatin (SST) and its analogues like octreotide (OCT) have analgesic effect on a variety of pain through peripheral SST receptors (SSTRs). However, the precise molecular mechanisms have not yet been fully elucidated. This research aimed to identify possible antinociceptive mechanisms, showing functional links of the SSTR2 and acid-sensing ion channels (ASICs). Herein, we reported that OCT inhibited the electrophysiological activity of ASICs in rat dorsal root ganglia (DRG) neurons. OCT concentration-dependently decreased the peak amplitude of acid-evoked inward currents, which were mediated by ASICs. OCT shifted concentration-response curve to protons downwards, with a decrease of 36.53 ± 5.28% in the maximal current response to pH 4.5 in the presence of OCT. OCT inhibited ASIC-mediated currents through SSTR2, since the inhibition was blocked by Cyn 154806, a specific SSTR2 antagonist. The OCT inhibition of ASIC-mediated currents was mimicked by H-89, a membrane-permeable inhibitor of PKA, and reversed by internal treatment of an adenylyl cyclase activator forskolin or 8-Br-cAMP. OCT also decreased the number of action potentials induced by acid stimuli through SSTR2. Finally, peripheral administration of 20 μM OCT, but not 2 μM OCT, significantly relieved nociceptive responses to intraplantar injection of acetic acid in rats. This occurred through local activation of SSTR2 in the injected hindpaw and was reversed following co-application of Cyn 154806. Our results indicate that activation SSTR2 by OCT can inhibit the activity of ASICs via an intracellular cAMP and PKA signaling pathway in rat DRG neurons. These observations demonstrate a cross-talk between ASICs and SSTR2 in peripheral sensory neurons, which was a novel peripheral analgesic mechanism of SST and its analogues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data used and/or analyzed in this study are available from the corresponding author on reasonable request.

References

  1. Hokfelt T, Elde R, Johansson O, Luft R, Nilsson G, Arimura A (1976) Immunohistochemical evidence for separate populations of somatostatin-containing and substance P-containing primary afferent neurons in the rat. Neuroscience 1(2):131–136. https://doi.org/10.1016/0306-4522(76)90008-7

    Article  CAS  PubMed  Google Scholar 

  2. Viollet C, Lepousez G, Loudes C, Videau C, Simon A, Epelbaum J (2008) Somatostatinergic systems in brain: networks and functions. Mol Cell Endocrinol 286(1–2):75–87. https://doi.org/10.1016/j.mce.2007.09.007

    Article  CAS  PubMed  Google Scholar 

  3. Patel YC, Greenwood M, Panetta R, Hukovic N, Grigorakis S, Robertson LA, Srikant CB (1996) Molecular biology of somatostatin receptor subtypes. Metab Clin Exp 45(8 Suppl 1):31–38. https://doi.org/10.1016/s0026-0495(96)90076-1

    Article  CAS  PubMed  Google Scholar 

  4. Gunther T, Tulipano G, Dournaud P, Bousquet C, Csaba Z, Kreienkamp HJ, Lupp A, Korbonits M et al (2018) International Union of Basic and Clinical Pharmacology. CV. Somatostatin receptors: structure, function, ligands, and new nomenclature. Pharmacol Rev 70(4):763–835. https://doi.org/10.1124/pr.117.015388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Eschalier A, Aumaitre O, Ardid D, Fialip J, Duchene-Marullaz P (1991) Long-lasting antinociceptive effect of RC-160, a somatostatin analog, in mice and rats. Eur J Pharmacol 199(1):119–121. https://doi.org/10.1016/0014-2999(91)90646-8

    Article  CAS  PubMed  Google Scholar 

  6. Prasoon P, Kumar R, Gautam M, Sebastian EK, Reeta KH, Ray SB (2015) Role of somatostatin and somatostatin receptor type 2 in postincisional nociception in rats. Neuropeptides 49:47–54. https://doi.org/10.1016/j.npep.2014.12.002

    Article  CAS  PubMed  Google Scholar 

  7. Li L, Luo R, Guo Y, Yao F, Cao D, Ma S, Wang J, Wang H et al (2014) The inhibitory effect of somatostatin receptor activation on bee venom-evoked nociceptive behavior and pCREB expression in rats. Biomed Res Int 2014:251785–251711. https://doi.org/10.1155/2014/251785

    Article  PubMed  PubMed Central  Google Scholar 

  8. Szolcsanyi J, Bolcskei K, Szabo A, Pinter E, Petho G, Elekes K, Borzsei R, Almasi R et al (2004) Analgesic effect of TT-232, a heptapeptide somatostatin analogue, in acute pain models of the rat and the mouse and in streptozotocin-induced diabetic mechanical allodynia. Eur J Pharmacol 498(1–3):103–109. https://doi.org/10.1016/j.ejphar.2004.07.085

    Article  CAS  PubMed  Google Scholar 

  9. Kumar R, Gautam M, Prasoon P, Gupta S, Ray SB (2018) Comparison of the peripheral antinociceptive effect of somatostatin with bupivacaine and morphine in the rodent postoperative pain model. Eur J Anaesthesiol 35(12):955–965. https://doi.org/10.1097/EJA.0000000000000825

    Article  CAS  PubMed  Google Scholar 

  10. Shi TJ, Xiang Q, Zhang MD, Barde S, Kai-Larsen Y, Fried K, Josephson A, Gluck L et al (2014) Somatostatin and its 2A receptor in dorsal root ganglia and dorsal horn of mouse and human: expression, trafficking and possible role in pain. Mol Pain 10:12. https://doi.org/10.1186/1744-8069-10-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sicuteri F, Geppetti P, Marabini S, Lembeck F (1984) Pain relief by somatostatin in attacks of cluster headache. Pain 18(4):359–365. https://doi.org/10.1016/0304-3959(84)90048-4

    Article  CAS  PubMed  Google Scholar 

  12. Dahaba AA, Mueller G, Mattiassich G, Rumpold-Seitlinger G, Bornemann H, Rehak PH, Linck G, Mischinger HJ et al (2009) Effect of somatostatin analogue octreotide on pain relief after major abdominal surgery. Eur J Pain 13(8):861–864. https://doi.org/10.1016/j.ejpain.2008.10.006

    Article  CAS  PubMed  Google Scholar 

  13. Mollenholt P, Rawal N, Gordh T Jr, Olsson Y (1994) Intrathecal and epidural somatostatin for patients with cancer. Analgesic effects and postmortem neuropathologic investigations of spinal cord and nerve roots. Anesthesiology 81(3):534–542. https://doi.org/10.1097/00000542-199409000-00004

    Article  CAS  PubMed  Google Scholar 

  14. Chrubasik J, Meynadier J, Blond S, Scherpereel P, Ackerman E, Weinstock M, Bonath K, Cramer H et al (1984) Somatostatin, a potent analgesic. Lancet 2(8413):1208–1209. https://doi.org/10.1016/s0140-6736(84)92761-2

    Article  CAS  PubMed  Google Scholar 

  15. Carlton SM, Du J, Zhou S, Coggeshall RE (2001) Tonic control of peripheral cutaneous nociceptors by somatostatin receptors. J Neurosci 21(11):4042–4049

    Article  CAS  Google Scholar 

  16. Penn RD, Paice JA, Kroin JS (1992) Octreotide: a potent new non-opiate analgesic for intrathecal infusion. Pain 49(1):13–19. https://doi.org/10.1016/0304-3959(92)90182-b

    Article  PubMed  Google Scholar 

  17. Carlton SM, Du J, Davidson E, Zhou S, Coggeshall RE (2001) Somatostatin receptors on peripheral primary afferent terminals: inhibition of sensitized nociceptors. Pain 90(3):233–244. https://doi.org/10.1016/s0304-3959(00)00407-3

    Article  CAS  PubMed  Google Scholar 

  18. Carlton SM, Zhou S, Du J, Hargett GL, Ji G, Coggeshall RE (2004) Somatostatin modulates the transient receptor potential vanilloid 1 (TRPV1) ion channel. Pain 110(3):616–627. https://doi.org/10.1016/j.pain.2004.04.042

    Article  CAS  PubMed  Google Scholar 

  19. Carlton SM, Zhou S, Kraemer B, Coggeshall RE (2003) A role for peripheral somatostatin receptors in counter-irritation-induced analgesia. Neuroscience 120(2):499–508. https://doi.org/10.1016/s0306-4522(03)00337-3

    Article  CAS  PubMed  Google Scholar 

  20. Helyes Z, Szabo A, Nemeth J, Jakab B, Pinter E, Banvolgyi A, Kereskai L, Keri G et al (2004) Antiinflammatory and analgesic effects of somatostatin released from capsaicin-sensitive sensory nerve terminals in a Freund’s adjuvant-induced chronic arthritis model in the rat. Arthritis Rheum 50(5):1677–1685. https://doi.org/10.1002/art.20184

    Article  CAS  PubMed  Google Scholar 

  21. Huang J, Polgar E, Solinski HJ, Mishra SK, Tseng PY, Iwagaki N, Boyle KA, Dickie AC et al (2018) Circuit dissection of the role of somatostatin in itch and pain. Nat Neurosci 21(5):707–716. https://doi.org/10.1038/s41593-018-0119-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yao F, Guo Y, Lu S, Sun C, Zhang Q, Wang H, Zhao Y (2008) Mechanical hyperalgesia is attenuated by local administration of octreotide in pristane-induced arthritis in Dark-Agouti rats. Life Sci 83(21–22):732–738. https://doi.org/10.1016/j.lfs.2008.09.018

    Article  CAS  PubMed  Google Scholar 

  23. Fioravanti A, Govoni M, La Montagna G, Perpignano G, Tirri G, Trotta F, Bogliolo A, Ciocci A et al (1995) Somatostatin 14 and joint inflammation: evidence for intraarticular efficacy of prolonged administration in rheumatoid arthritis. Drugs Exp Clin Res 21(3):97–103

    CAS  PubMed  Google Scholar 

  24. McCleskey EW, Gold MS (1999) Ion channels of nociception. Annu Rev Physiol 61:835–856. https://doi.org/10.1146/annurev.physiol.61.1.835

    Article  CAS  PubMed  Google Scholar 

  25. Alvarez de la Rosa D, Zhang P, Shao D, White F, Canessa CM (2002) Functional implications of the localization and activity of acid-sensitive channels in rat peripheral nervous system. Proc Natl Acad Sci U S A 99(4):2326–2331. https://doi.org/10.1073/pnas.042688199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Benson CJ, Xie J, Wemmie JA, Price MP, Henss JM, Welsh MJ, Snyder PM (2002) Heteromultimers of DEG/ENaC subunits form H+-gated channels in mouse sensory neurons. Proc Natl Acad Sci U S A 99(4):2338–2343. https://doi.org/10.1073/pnas.032678399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Deval E, Noel J, Lay N, Alloui A, Diochot S, Friend V, Jodar M, Lazdunski M et al (2008) ASIC3, a sensor of acidic and primary inflammatory pain. EMBO J 27(22):3047–3055. https://doi.org/10.1038/emboj.2008.213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ugawa S, Ueda T, Ishida Y, Nishigaki M, Shibata Y, Shimada S (2002) Amiloride-blockable acid-sensing ion channels are leading acid sensors expressed in human nociceptors. J Clin Invest 110(8):1185–1190. https://doi.org/10.1172/JCI15709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wemmie JA, Taugher RJ, Kreple CJ (2013) Acid-sensing ion channels in pain and disease. Nat Rev Neurosci 14(7):461–471. https://doi.org/10.1038/nrn3529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Reeh PW, Steen KH (1996) Tissue acidosis in nociception and pain. Prog Brain Res 113:143–151. https://doi.org/10.1016/s0079-6123(08)61085-7

    Article  CAS  PubMed  Google Scholar 

  31. Lee CH, Chen CC (2018) Roles of ASICs in nociception and proprioception. Adv Exp Med Biol 1099:37–47. https://doi.org/10.1007/978-981-13-1756-9_4

    Article  CAS  PubMed  Google Scholar 

  32. Li WG, Xu TL (2015) Acid-sensing ion channels: a novel therapeutic target for pain and anxiety. Curr Pharm Des 21(7):885–894. https://doi.org/10.2174/1381612820666141027124506

    Article  CAS  PubMed  Google Scholar 

  33. Dussor G (2015) ASICs as therapeutic targets for migraine. Neuropharmacology 94:64–71. https://doi.org/10.1016/j.neuropharm.2014.12.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wu J, Liu TT, Zhou YM, Qiu CY, Ren P, Jiao M, Hu WP (2017) Sensitization of ASIC3 by proteinase-activated receptor 2 signaling contributes to acidosis-induced nociception. J Neuroinflammation 14(1):150. https://doi.org/10.1186/s12974-017-0916-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gavva NR, Tamir R, Qu Y, Klionsky L, Zhang TJ, Immke D, Wang J, Zhu D et al (2005) AMG 9810 [(E)-3-(4-t-butylphenyl)-N-(2,3-dihydrobenzo[b][1,4] dioxin-6-yl)acrylamide], a novel vanilloid receptor 1 (TRPV1) antagonist with antihyperalgesic properties. J Pharmacol Exp Ther 313(1):474–484. https://doi.org/10.1124/jpet.104.079855

    Article  CAS  PubMed  Google Scholar 

  36. Omori M, Yokoyama M, Matsuoka Y, Kobayashi H, Mizobuchi S, Itano Y, Morita K, Ichikawa H (2008) Effects of selective spinal nerve ligation on acetic acid-induced nociceptive responses and ASIC3 immunoreactivity in the rat dorsal root ganglion. Brain Res 1219:26–31. https://doi.org/10.1016/j.brainres.2008.03.040

    Article  CAS  PubMed  Google Scholar 

  37. Bass RT, Buckwalter BL, Patel BP, Pausch MH, Price LA, Strnad J, Hadcock JR (1996) Identification and characterization of novel somatostatin antagonists. Mol Pharmacol 50(4):709–715

    CAS  PubMed  Google Scholar 

  38. Tentler JJ, Hadcock JR, Gutierrez-Hartmann A (1997) Somatostatin acts by inhibiting the cyclic 3′,5′-adenosine monophosphate (cAMP)/protein kinase A pathway, cAMP response element-binding protein (CREB) phosphorylation, and CREB transcription potency. Mol Endocrinol 11(7):859–866. https://doi.org/10.1210/mend.11.7.9943

    Article  CAS  PubMed  Google Scholar 

  39. Viollet C, Prevost G, Maubert E, Faivre-Bauman A, Gardette R, Kordon C, Loudes C, Slama A et al (1995) Molecular pharmacology of somatostatin receptors. Fundamental & clinical pharmacology 9(2):107–113. https://doi.org/10.1111/j.1472-8206.1995.tb00269.x

    Article  CAS  Google Scholar 

  40. Kumar U, Grant M (2010) Somatostatin and somatostatin receptors. Results Probl Cell Differ 50:137–184. https://doi.org/10.1007/400_2009_29

    Article  CAS  PubMed  Google Scholar 

  41. Patel YC, Greenwood MT, Panetta R, Demchyshyn L, Niznik H, Srikant CB (1995) The somatostatin receptor family. Life Sci 57(13):1249–1265. https://doi.org/10.1016/0024-3205(95)02082-t

    Article  CAS  PubMed  Google Scholar 

  42. Schulz S, Schreff M, Schmidt H, Handel M, Przewlocki R, Hollt V (1998) Immunocytochemical localization of somatostatin receptor sst2A in the rat spinal cord and dorsal root ganglia. Eur J Neurosci 10(12):3700–3708. https://doi.org/10.1046/j.1460-9568.1998.00386.x

    Article  CAS  PubMed  Google Scholar 

  43. Bar KJ, Schurigt U, Scholze A, Segond Von Banchet G, Stopfel N, Brauer R, Halbhuber KJ, Schaible HG (2004) The expression and localization of somatostatin receptors in dorsal root ganglion neurons of normal and monoarthritic rats. Neuroscience 127(1):197–206. https://doi.org/10.1016/j.neuroscience.2004.04.051

    Article  CAS  PubMed  Google Scholar 

  44. Cai Q, Qiu CY, Qiu F, Liu TT, Qu ZW, Liu YM, Hu WP (2014) Morphine inhibits acid-sensing ion channel currents in rat dorsal root ganglion neurons. Brain Res 1554:12–20. https://doi.org/10.1016/j.brainres.2014.01.042

    Article  CAS  PubMed  Google Scholar 

  45. Liu YQ, Qiu F, Qiu CY, Cai Q, Zou P, Wu H, Hu WP (2012) Cannabinoids inhibit acid-sensing ion channel currents in rat dorsal root ganglion neurons. PLoS One 7(9):e45531. https://doi.org/10.1371/journal.pone.0045531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chai S, Li M, Lan J, Xiong ZG, Saugstad JA, Simon RP (2007) A kinase-anchoring protein 150 and calcineurin are involved in regulation of acid-sensing ion channels ASIC1a and ASIC2a. J Biol Chem 282(31):22668–22677. https://doi.org/10.1074/jbc.M703624200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Guo L, Zhao L, Ming P, Hong L, Liu A, Li R (2018) Sumatriptan inhibits the electrophysiological activity of ASICs in rat trigeminal ganglion neurons. Eur J Pharmacol 841:98–103. https://doi.org/10.1016/j.ejphar.2018.10.013

    Article  CAS  PubMed  Google Scholar 

  48. Zhou YM, Wu L, Wei S, Jin Y, Liu TT, Qiu CY, Hu WP (2019) Enhancement of acid-sensing ion channel activity by prostaglandin E2 in rat dorsal root ganglion neurons. Brain Res 1724:146442. https://doi.org/10.1016/j.brainres.2019.146442

    Article  CAS  PubMed  Google Scholar 

  49. Meriney SD, Gray DB, Pilar GR (1994) Somatostatin-induced inhibition of neuronal Ca2+ current modulated by cGMP-dependent protein kinase. Nature 369(6478):336–339. https://doi.org/10.1038/369336a0

    Article  CAS  PubMed  Google Scholar 

  50. Inoue M, Nakajima S, Nakajima Y (1988) Somatostatin induces an inward rectification in rat locus coeruleus neurones through a pertussis toxin-sensitive mechanism. J Physiol 407:177–198. https://doi.org/10.1113/jphysiol.1988.sp017409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Woo YC, Park SS, Subieta AR, Brennan TJ (2004) Changes in tissue pH and temperature after incision indicate acidosis may contribute to postoperative pain. Anesthesiology 101(2):468–475. https://doi.org/10.1097/00000542-200408000-00029

    Article  PubMed  Google Scholar 

  52. Deval E, Noel J, Gasull X, Delaunay A, Alloui A, Friend V, Eschalier A, Lazdunski M et al (2011) Acid-sensing ion channels in postoperative pain. J Neurosci 31(16):6059–6066. https://doi.org/10.1523/JNEUROSCI.5266-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 81671101) and the Campus Scientific Research Programs of Hubei University of Science and Technology (No. 2021-22X09).

Author information

Authors and Affiliations

Authors

Contributions

WPH designed this research. TTL, SW, YJ, and CYQ performed the experiments. TTL and SW participated in data analysis. TTL, SW, and WPH wrote the paper. All authors contributed substantially to this research and reviewed this manuscript.

Corresponding author

Correspondence to Wang-Ping Hu.

Ethics declarations

All experimental protocols were approved by the animal research ethics committee of Hubei University of Science and Technology in full accordance with the ethical guidelines of the National Institutes of Health for the care and use of laboratory animals.

Conflict of Interest

The authors declare that they have no conflict of interest.

Consent to Participate

On admission, each participant signed written informed consent for their data to be analyzed and published anonymously for research purposes.

Consent for Publication

On admission, each participant signed written informed consent for their data to be analyzed and published anonymously for research purposes.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, TT., Wei, S., Jin, Y. et al. Inhibition of ASIC-Mediated Currents by Activation of Somatostatin 2 Receptors in Rat Dorsal Root Ganglion Neurons. Mol Neurobiol 58, 2107–2117 (2021). https://doi.org/10.1007/s12035-020-02257-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-02257-x

Keywords

Navigation