Skip to main content
Log in

The Ubiquitin System: a Regulatory Hub for Intellectual Disability and Autism Spectrum Disorder

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Intellectual disability (ID) and autism spectrum disorder (ASD) are two of the most common neurodevelopmental disorders. Both disorders are extremely heterogenous, and only ~ 40% of reported cases have so far been attributed to genetic mutations. Of the many cellular processes that are affected, the ubiquitin system (UbS) is of particular relevance in that it can rapidly regulate multiple signaling cascades simultaneously. The UbS is a post-translational modification process that revolves around the covalent attachment of a ubiquitin moiety to a substrate, thereby influencing different elements of protein biology, including trafficking, signal transduction, and degradation. Importantly, the UbS has been implicated in regulating multiple pathophysiological pathways related to ASD and ID. This review will discuss how the UbS acts as major signaling hub in the pathogenesis of ASD and ID, raising the prospect of treating broader patient cohorts by targeting the UbS as a common point of convergence of various mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. American Psychiatric Association (2013) Diagnostic and Statistical Manual of Mental Disorders. 5th edn., Washington, DC

  2. Chiurazzi P, Pirozzi F (2016) Advances in understanding – genetic basis of intellectual disability. F1000Research 5:599. https://doi.org/10.12688/f1000research.7134.1

    Article  CAS  Google Scholar 

  3. Ropers HH, Hamel BCJ (2005) X-linked mental retardation. Nat Rev Genet 6(1):46–57. https://doi.org/10.1038/nrg1501

    Article  CAS  PubMed  Google Scholar 

  4. Maulik PK, Mascarenhas MN, Mathers CD, Dua T, Saxena S (2011) Prevalence of intellectual disability: a meta-analysis of population-based studies. Res Dev Disabil 32(2):419–436. https://doi.org/10.1016/j.ridd.2010.12.018

    Article  PubMed  Google Scholar 

  5. McKenzie K, Milton M, Smith G, Ouellette-Kuntz H (2016) Systematic review of the prevalence and incidence of intellectual disabilities: current trends and issues. Curr Dev Disord Rep 3(2):104–115. https://doi.org/10.1007/s40474-016-0085-7

    Article  Google Scholar 

  6. Neri G, Schwartz CE, Lubs HA, Stevenson RE (2018) X-linked intellectual disability update 2017. Am J Med Genet A 176(6):1375–1388. https://doi.org/10.1002/ajmg.a.38710

    Article  PubMed  PubMed Central  Google Scholar 

  7. Topper S, Ober C, Das S (2011) Exome sequencing and the genetics of intellectual disability. Clin Genet 80(2):117–126. https://doi.org/10.1111/j.1399-0004.2011.01720.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rauch A, Hoyer J, Guth S, Zweier C, Kraus C, Becker C, Zenker M, Hüffmeier U et al (2006) Diagnostic yield of various genetic approaches in patients with unexplained developmental delay or mental retardation. Am J Med Genet A 140A(19):2063–2074. https://doi.org/10.1002/ajmg.a.31416

  9. Jusko TA, Jr CR, Lanphear BP, Cory-Slechta DA, Parsons PJ, Canfield RL (2008) Blood lead concentrations< 10 g/dL and child intelligence at 6 years of age. Environ Health Perspect 116(2):243

    Article  CAS  PubMed  Google Scholar 

  10. Kaufman L, Ayub M, Vincent JB (2010) The genetic basis of non-syndromic intellectual disability: a review. J Neurodev Disord 2(4):182–209. https://doi.org/10.1007/s11689-010-9055-2

    Article  PubMed  PubMed Central  Google Scholar 

  11. Huang J, Zhu T, Qu Y, Mu D (2016) Prenatal, perinatal and neonatal risk factors for intellectual disability: a systemic review and meta-analysis. doi:https://doi.org/10.1371/journal.pone.0153655

  12. Langridge AT, Glasson EJ, Nassar N, Jacoby P (2013) Maternal conditions and perinatal characteristics associated with autism spectrum disorder and intellectual disability. doi:https://doi.org/10.1371/journal.pone.0050963

  13. Matson JL, Shoemaker M (2009) Intellectual disability and its relationship to autism spectrum disorders. Res Dev Disabil 30(6):1107–1114. https://doi.org/10.1016/j.ridd.2009.06.003

    Article  PubMed  Google Scholar 

  14. Fombonne E (2003) Epidemiological surveys of autism and other pervasive developmental disorders: an update. J Autism Dev Disord 33(4):365–382

    Article  PubMed  Google Scholar 

  15. Elsabbagh M, Divan G, Koh YJ, Kim YS, Kauchali S, Marcin C, Montiel-Nava C, Patel V et al (2012) Global prevalence of autism and other pervasive developmental disorders. Autism Res 5(3):160–179. https://doi.org/10.1002/aur.239

  16. Baio J, Wiggins L, Christensen DL, Maenner MJ, Daniels J, Warren Z, Kurzius-Spencer M, Zahorodny W et al (2018) Prevalence of autism spectrum disorder among children aged 8 years - autism and developmental disabilities monitoring network, 11 sites, United States, 2014. MMWR Surveill Summ 67(6):1–23. https://doi.org/10.15585/mmwr.ss6706a1

  17. Pickart CM, Eddins MJ (2004) Ubiquitin: structures, functions, mechanisms. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1695(1–3):55–72. https://doi.org/10.1016/j.bbamcr.2004.09.019

    Article  CAS  Google Scholar 

  18. Sadowski M, Suryadinata R, Tan A, Roesley S, Sarcevic B (2012) Protein monoubiquitination and polyubiquitination generate structural diversity to control distinct biological processes. IUBMB Life 64(2):136–142. https://doi.org/10.1002/iub.589

    Article  CAS  PubMed  Google Scholar 

  19. Sadowski M, Sarcevic B (2010) Mechanisms of mono- and poly-ubiquitination: Ubiquitination specificity depends on compatibility between the E2 catalytic core and amino acid residues proximal to the lysine. Cell Div 5:19. https://doi.org/10.1186/1747-1028-5-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Passmore LA, Barford D (2004) Getting into position: the catalytic mechanisms of protein ubiquitylation. The Biochemical Journal 379(Pt 3):513–525. https://doi.org/10.1042/BJ20040198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Peng J, Schwartz D, Elias JE, Thoreen CC, Cheng D, Marsischky G, Roelofs J, Finley D et al (2003) A proteomics approach to understanding protein ubiquitination. Nat Biotechnol 21(8). https://doi.org/10.1038/nbt849

  22. Hurley JH, Lee S, Prag G (2006) Ubiquitin-binding domains. Biochem J 399(3):361–372. https://doi.org/10.1042/BJ20061138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Joberty G, Petersen C, Gao L, Macara IG (2000) The cell-polarity protein Par6 links Par3 and atypical protein kinase C to Cdc42. Nat Cell Biol 2(8):531–539. https://doi.org/10.1038/35019573

    Article  CAS  PubMed  Google Scholar 

  24. Stegmüller J, Bonni A (2010) Destroy to create: E3 ubiquitin ligases in neurogenesis. F1000 Biology Reports 2:38. https://doi.org/10.3410/B2-38

    Article  PubMed  PubMed Central  Google Scholar 

  25. Santini E, Huynh TN, MacAskill AF, Carter AG, Pierre P, Ruggero D, Kaphzan H, Klann E (2013) Exaggerated translation causes synaptic and behavioural aberrations associated with autism. Nature 493(7432):411–415. https://doi.org/10.1038/nature11782

    Article  CAS  PubMed  Google Scholar 

  26. Kwan V, Unda BK, Singh KK (2016) Wnt signaling networks in autism spectrum disorder and intellectual disability. J Neurodev Disord 8:45. https://doi.org/10.1186/s11689-016-9176-3

    Article  PubMed  PubMed Central  Google Scholar 

  27. Nakagawa N, Li J, Yabuno-Nakagawa K, Eom TY, Cowles M, Mapp T, Taylor R, Anton ES (2017) APC sets the Wnt tone necessary for cerebral cortical progenitor development. Genes Dev 31(16):1679–1692. https://doi.org/10.1101/gad.302679.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Draganova K, Zemke M, Zurkirchen L, Valenta T, Cantu C, Okoniewski M, Schmid MT, Hoffmans R et al (2015) Wnt/beta-catenin signaling regulates sequential fate decisions of murine cortical precursor cells. Stem Cells 33(1):170–182. https://doi.org/10.1002/stem.1820

  29. Yi JJ, Barnes AP, Hand R, Polleux F, Ehlers MD (2010) TGF-β signaling specifies axons during brain development. Cell 142(1):144–157. https://doi.org/10.1016/j.cell.2010.06.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ding M, Shen K (2008) The role of the ubiquitin proteasome system in synapse remodeling and neurodegenerative diseases. BioEssays 30(11–12):1075–1083. https://doi.org/10.1002/bies.20843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schwamborn JC, Khazaei MR, Püschel AW (2007) The interaction of mPar3 with the ubiquitin ligase Smurf2 is required for the establishment of neuronal polarity. J Biol Chem 282(48):35259–35268. https://doi.org/10.1074/jbc.M703438200

  32. Cheon S, Dean M, Chahrour M (2018) The ubiquitin proteasome pathway in neuropsychiatric disorders. Neurobiol Learn Mem. https://doi.org/10.1016/j.nlm.2018.01.012

  33. O'Roak BJ, Vives L, Fu W, Egertson JD, Stanaway IB, Phelps IG, Carvill G, Kumar A et al (2012) Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders. Science 338(6114):1619–1622. https://doi.org/10.1126/science.1227764

  34. Lewis JC, Thomas HV, Murphy KC, Sampson JR (2004) Genotype and psychological phenotype in tuberous sclerosis. J Med Genet 41(3):203–207. https://doi.org/10.1136/jmg.2003.012757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Au K, Williams AT, Roach SE, Batchelor L, Sparagana SP, Delgado MR, Wheless JW, Baumgartner JE et al (2007) Genotype/phenotype correlation in 325 individuals referred for a diagnosis of tuberous sclerosis complex in the United States. Genetics in Medicine 9(2):88–100. https://doi.org/10.1097/GIM.0b013e31803068c7

  36. Rosina E, Battan B, Siracusano M, Di Criscio L, Hollis F, Pacini L, Curatolo P, Bagni C (2019) Disruption of mTOR and MAPK pathways correlates with severity in idiopathic autism. Transl Psychiatry 9(1):50. https://doi.org/10.1038/s41398-018-0335-z

    Article  PubMed  PubMed Central  Google Scholar 

  37. Laplante M, Sabatini DM (2009) mTOR signaling at a glance. J Cell Sci 122(20):3589–3594. https://doi.org/10.1242/jcs.051011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149(2):274–293. https://doi.org/10.1016/j.cell.2012.03.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Magdalon J, Sánchez-Sánchez SM, Griesi-Oliveira K, Sertié ALL (2017) Dysfunctional mTORC1 signaling: a convergent mechanism between syndromic and nonsyndromic forms of autism spectrum disorder? Int J Mol Sci 18(3). https://doi.org/10.3390/ijms18030659

  40. Oh WJ, Jacinto E (2011) mTOR complex 2 signaling and functions. Cell Cycle 10(14):2305–2316. https://doi.org/10.4161/cc.10.14.16586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rademacher S, Eickholt BJ (2019) PTEN in autism and neurodevelopmental disorders. Cold Spring Harb Perspect Med 9(11). https://doi.org/10.1101/cshperspect.a036780

  42. Butler MG, Dasouki MJ, Zhou XP, Talebizadeh Z, Brown M, Takahashi TN, Miles JH, Wang CH et al (2005) Subset of individuals with autism spectrum disorders and extreme macrocephaly associated with germline PTEN tumour suppressor gene mutations. J Med Genet 42(4):318–321. https://doi.org/10.1136/jmg.2004.024646

  43. Buxbaum JD, Cai G, Chaste P, Nygren G, Goldsmith J, Reichert J, Anckarsater H, Rastam M et al (2007) Mutation screening of the PTEN gene in patients with autism spectrum disorders and macrocephaly. Am J Med Genet B Neuropsychiatr Genet 144B(4):484–491. https://doi.org/10.1002/ajmg.b.30493

  44. Kurata H, Shirai K, Saito Y, Okazaki T, Ohno K, Oguri M, Adachi K, Nanba E et al (2018) Neurodevelopmental disorders in children with macrocephaly: a prevalence study and PTEN gene analysis. Brain and Development 40(1):36–41. https://doi.org/10.1016/j.braindev.2017.07.005

  45. Kwon C-HH, Luikart BW, Powell CM, Zhou J, Matheny SA, Zhang W, Li Y, Baker SJ et al (2006) Pten regulates neuronal arborization and social interaction in mice. Neuron 50(3):377–388. https://doi.org/10.1016/j.neuron.2006.03.023

  46. Zhou J, Blundell J, Ogawa S, Kwon C-HH, Zhang W, Sinton C, Powell CM, Parada LF (2009) Pharmacological inhibition of mTORC1 suppresses anatomical, cellular, and behavioral abnormalities in neural-specific Pten knock-out mice. J Neurosci 29(6):1773–1783. https://doi.org/10.1523/JNEUROSCI.5685-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lugo JN, Smith GD, Arbuckle EP, White J, Holley AJ, Floruta CM, Ahmed N, Gomez MC et al (2014) Deletion of PTEN produces autism-like behavioral deficits and alterations in synaptic proteins. Front Mol Neurosci. https://doi.org/10.3389/fnmol.2014.00027

  48. Thoreen CC, Chantranupong L, Keys HR, Wang T, Gray NS, Sabatini DM (2012) A unifying model for mTORC1-mediated regulation of mRNA translation. Nature 485(7396):109–113. https://doi.org/10.1038/nature11083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Richards C, Jones C, Groves L, Moss J, Oliver C (2015) Prevalence of autism spectrum disorder phenomenology in genetic disorders: a systematic review and meta-analysis. Lancet Psychiatry 2(10):909–916. https://doi.org/10.1016/S2215-0366(15)00376-4

    Article  PubMed  Google Scholar 

  50. Darnell JC, Van Driesche SJ, Zhang C, Hung KY, Mele A, Fraser CE, Stone EF, Chen C et al (2011) FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell 146(2):247–261. https://doi.org/10.1016/j.cell.2011.06.013

  51. Darnell JC, Klann E (2013) The translation of translational control by FMRP: therapeutic targets for FXS. Nat Neurosci 16(11):1530–1536. https://doi.org/10.1038/nn.3379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Huynh TN, Shah M, Koo SY, Faraud KS, Santini E, Klann E (2015) eIF4E/Fmr1 double mutant mice display cognitive impairment in addition to ASD-like behaviors. Neurobiol Dis 83:67–74. https://doi.org/10.1016/j.nbd.2015.08.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. La Fata G, Gärtner A, Domínguez-Iturza N, Dresselaers T, Dawitz J, Poorthuis RB, Averna M, Himmelreich U et al (2014) FMRP regulates multipolar to bipolar transition affecting neuronal migration and cortical circuitry. Nat Neurosci 17(12):1693–1700. https://doi.org/10.1038/nn.3870

  54. Huber KM, Gallagher SM, Warren ST, Bear MF (2002) Altered synaptic plasticity in a mouse model of fragile X mental retardation. Proc Natl Acad Sci U S A 99(11):7746–7750. https://doi.org/10.1073/pnas.122205699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sharma A, Hoeffer CA, Takayasu Y, Miyawaki T, McBride SM, Klann E, Zukin RS (2010) Dysregulation of mTOR signaling in fragile X syndrome. J Neurosci 30(2):694–702. https://doi.org/10.1523/JNEUROSCI.3696-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Uutela M, Lindholm J, Louhivuori V, Wei H, Louhivuori LM, Pertovaara A, Akerman K, Castrén E et al (2012) Reduction of BDNF expression in Fmr1 knockout mice worsens cognitive deficits but improves hyperactivity and sensorimotor deficits. Genes Brain Behav 11(5):513–523. https://doi.org/10.1111/j.1601-183X.2012.00784.x

  57. Comery TA, Harris JB, Willems PJ, Oostra BA, Irwin SA, Weiler IJ, Greenough WT (1997) Abnormal dendritic spines in fragile X knockout mice: maturation and pruning deficits. Proc Natl Acad Sci U S A 94(10):5401–5404

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Grossman AW, Elisseou NM, McKinney BC, Greenough WT (2006) Hippocampal pyramidal cells in adult Fmr1 knockout mice exhibit an immature-appearing profile of dendritic spines. Brain Res 1084(1):158–164. https://doi.org/10.1016/j.brainres.2006.02.044

    Article  CAS  PubMed  Google Scholar 

  59. Irwin SA, Idupulapati M, of … G-ME (2002) Dendritic spine and dendritic field characteristics of layer V pyramidal neurons in the visual cortex of fragile-X knockout mice. Am J Med Genet 111:140–146. https://doi.org/10.1002/ajmg.10500

    Article  PubMed  Google Scholar 

  60. MacDonald BT, Tamai K, He X (2009) Wnt/β-catenin signaling: components, mechanisms, and diseases. Dev Cell 17(1):9–26. https://doi.org/10.1016/j.devcel.2009.06.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mao J, Wang J, Liu B, Pan W, Iii FGH, cell FC (2001) Low-density lipoprotein receptor-related protein-5 binds to Axin and regulates the canonical Wnt signaling pathway. Low-density lipoprotein receptor-related protein-5 binds to Axin and regulates the canonical Wnt signaling pathway. Mol Cell 7:801–809

    Article  CAS  PubMed  Google Scholar 

  62. Davidson G, Wu W, Shen J, Bilic J, Fenger U, Stannek P, Glinka A, Niehrs C (2005) Casein kinase 1 γ couples Wnt receptor activation to cytoplasmic signal transduction. Nature 438:867–872. https://doi.org/10.1038/nature04170

    Article  CAS  PubMed  Google Scholar 

  63. Zeng X, Tamai K, Doble B, Li S, Huang H, Nature HR (2005) A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation. A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation. Nature 438:873–877

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Li VS, Ng SS, Boersema PJ, Low TY, Karthaus WR, Gerlach JP, Mohammed S, Heck AJ et al (2012) Wnt signaling through inhibition of β-catenin degradation in an intact Axin1 complex. Cell 149(6):1245–1256. https://doi.org/10.1016/j.cell.2012.05.002

  65. Hoppler S, Kavanagh CL (2007) Wnt signalling: variety at the core. J Cell Sci 120(3). https://doi.org/10.1242/jcs.03363

  66. O’Roak BJ, Vives L, Girirajan S, Karakoc E, Krumm N, Coe BP, Levy R, Ko A et al (2012) Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 485(7397):246–250. https://doi.org/10.1038/nature10989

  67. Kuechler A, Willemsen MH, Albrecht B, Bacino CA, Bartholomew DW, van Bokhoven H, van den Boogaard MJH, Bramswig N et al (2015) De novo mutations in beta-catenin (CTNNB1) appear to be a frequent cause of intellectual disability: expanding the mutational and clinical spectrum. Hum Genet 134:97–107. https://doi.org/10.1007/s00439-014-1498-1

  68. Gazestani VH, Pramparo T, Nalabolu S, Kellman BP, Murray S, Lopez L, Pierce K, Courchesne E et al (2019) A perturbed gene network containing PI3K-AKT, RAS-ERK and WNT-beta-catenin pathways in leukocytes is linked to ASD genetics and symptom severity. Nat Neurosci 22(10):1624–1634. https://doi.org/10.1038/s41593-019-0489-x

  69. Chenn A (2002) Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science 297(5580):365–369. https://doi.org/10.1126/science.1074192

    Article  CAS  PubMed  Google Scholar 

  70. Woodhead GJ, Mutch CA, Olson EC, Chenn A (2006) Cell-autonomous beta-catenin signaling regulates cortical precursor proliferation. J Neurosci 26:12620–12630. https://doi.org/10.1523/JNEUROSCI.3180-06.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Dong F, Jiang J, McSweeney C, Zou D, Liu L, Mao Y (2016) Deletion of CTNNB1 in inhibitory circuitry contributes to autism-associated behavioral defects. Hum Mol Genet 25(13)

  72. Junghans D, Hack I, Frotscher M, Taylor V, Kemler R (2005) β-Catenin–mediated cell-adhesion is vital for embryonic forebrain development. Dev Dyn 233:528–539. https://doi.org/10.1002/dvdy.20365

    Article  CAS  PubMed  Google Scholar 

  73. Bian W-J, Miao W-Y, He S-J, Qiu Z, Yu X (2015) Coordinated spine pruning and maturation mediated by inter-spine competition for cadherin/catenin complexes. Cell 162(4):808–822. https://doi.org/10.1016/j.cell.2015.07.018

    Article  CAS  PubMed  Google Scholar 

  74. Thompson TV, Lin G, Bochar DA (2008) CHD8 is an ATP-dependent chromatin remodeling factor that regulates β-catenin target genes. Mol Cell Biol 28(12):3894–3904. https://doi.org/10.1128/MCB.00322-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Nishiyama M, Skoultchi AI, Nakayama KI (2012) Histone H1 recruitment by CHD8 is essential for suppression of the Wnt–β-catenin signaling pathway. Mol Cell Biol 32:501–512. https://doi.org/10.1128/MCB.06409-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Durak O, Gao F, Kaeser-Woo Y, Rueda R, Martorell AJ, Nott A, Liu CY, Watson AL et al (2016) Chd8 mediates cortical neurogenesis via transcriptional regulation of cell cycle and Wnt signaling. Nat Neurosci 19:1477–1488. https://doi.org/10.1038/nn.4400

  77. De Rubeis S, He X, Goldberg AP, Poultney CS, Samocha K, Cicek AE, Kou Y, Liu L et al (2014) Synaptic, transcriptional and chromatin genes disrupted in autism. Nature 515(7526):209–215. https://doi.org/10.1038/nature13772

  78. Krumm N, O’Roak BJ, Shendure J, Eichler EE (2014) A de novo convergence of autism genetics and molecular neuroscience. Trends Neurosci 37(2):95–105. https://doi.org/10.1016/j.tins.2013.11.005

    Article  CAS  PubMed  Google Scholar 

  79. Sugathan A, Biagioli M, Golzio C, Erdin S, Blumenthal I, Manavalan P, Ragavendran A, Brand H et al (2014) CHD8 regulates neurodevelopmental pathways associated with autism spectrum disorder in neural progenitors. Proc Natl Acad Sci U S A 111(42):E4468–E4477. https://doi.org/10.1073/pnas.1405266111

  80. Xu Q, Liu YY, Wang X, Tan GH, Li HP, Hulbert SW, Li CY, Hu CC et al (2018) Autism-associated CHD8 deficiency impairs axon development and migration of cortical neurons. Mol Autism 9:65–17. https://doi.org/10.1186/s13229-018-0244-2

  81. Shi Y, Massagué J (2003) Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113(6):685–700

    Article  CAS  PubMed  Google Scholar 

  82. Weiss A, Attisano L (2013) The TGFbeta superfamily signaling pathway. Wiley Interdiscip Rev Dev Biol 2(1):47–63. https://doi.org/10.1002/wdev.86

    Article  CAS  PubMed  Google Scholar 

  83. Moustakas A, Souchelnytskyi S, Heldin CH (2001) Smad regulation in TGF-beta signal transduction. J Cell Sci 114(Pt 24):4359–4369

    CAS  PubMed  Google Scholar 

  84. Ebisawa T, Fukuchi M, Murakami G, Chiba T, Tanaka K, Imamura T, Miyazono K (2001) Smurf1 interacts with transforming growth factor-beta type I receptor through Smad7 and induces receptor degradation. J Biol Chem 276(16):12477–12480. https://doi.org/10.1074/jbc.C100008200

    Article  CAS  PubMed  Google Scholar 

  85. Derynck R, Zhang YE (2003) Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature 425(6958):577–584. https://doi.org/10.1038/nature02006

    Article  CAS  PubMed  Google Scholar 

  86. Ng J (2008) TGFβ signals regulate axonal development through distinct Smad-independent mechanisms. Development 135(24):4025–4035

    Article  CAS  PubMed  Google Scholar 

  87. Stegeman S, Jolly LA, Premarathne S, Gecz J, Richards LJ, Mackay-Sim A, Wood SA (2013) Loss of Usp9x disrupts cortical architecture, hippocampal development and TGFβ-mediated axonogenesis. PLoS One 8(7). https://doi.org/10.1371/journal.pone.0068287

  88. Ozdamar B, Bose R, Barrios-Rodiles M, Wang H-R, Zhang Y, Wrana JL (2005) Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity. Science 307(5715):1603–1609

    Article  CAS  PubMed  Google Scholar 

  89. Bradke F, Dotti CG (1999) The role of local actin instability in axon formation. Science 283(5409):1931–1934

    Article  CAS  PubMed  Google Scholar 

  90. Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA (2005) Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol 57(1):67–81. https://doi.org/10.1002/ana.20315

    Article  CAS  PubMed  Google Scholar 

  91. Okada K, Hashimoto K, Iwata Y, Nakamura K, Tsujii M, Tsuchiya KJ, Sekine Y, Suda S et al (2007) Decreased serum levels of transforming growth factor- 1 in patients with autism. Prog Neuro-Psychopharmacol Biol Psychiatry 31(1):187–190

  92. Ashwood P, Enstrom A, Krakowiak P, Hertz-Picciotto I, Hansen R, Croen L, Ozonoff S, Pessah I et al (2008) Decreased transforming growth factor beta1 in autism: a potential link between immune dysregulation and impairment in clinical behavioral outcomes. J Neuroimmunol 204:149–153

  93. El Gohary TM, El Aziz NA, Darweesh M, Sadaa ES (2015) Plasma level of transforming growth factor β 1 in children with autism spectrum disorder. Egyptian Journal of Ear, Nose, Throat and Allied Sciences. https://doi.org/10.1016/j.ejenta.2014.12.002

  94. Veldhoen M, Stockinger B (2006) TGF 1, a ‘Jack of all trades’: the link with pro-inflammatory IL-17-producing T cells. Trends Immunol 27(8):358–361

    Article  CAS  PubMed  Google Scholar 

  95. Ashwood P, Krakowiak P, Hertz-Picciotto I, Hansen R, Pessah I, de Water J, Ashwood P, Krakowiak P et al (2011) Elevated plasma cytokines in autism spectrum disorders provide evidence of immune dysfunction and are associated with impaired behavioral outcome. Brain Behav Immun 25:40–45. https://doi.org/10.1016/j.bbi.2010.08.003

  96. Dickson MC, Martin JS, Cousins FM, Kulkarni BA, Karlsson S, Akhurst RJ (1995) Defective haematopoiesis and vasculogenesis in transforming growth factor-beta 1 knock out mice. Development 121:1845–1854

    CAS  PubMed  Google Scholar 

  97. Brionne TC, Tesseur I, Masliah E, Wyss-Coray T (2003) Loss of TGF-β1 leads to increased neuronal cell death and microgliosis in mouse brain. Neuron 40:1133–1145

    Article  CAS  PubMed  Google Scholar 

  98. Sanford PL, Ormsby I, Groot AC, Sariola H, Friedman R, Boivin GP, Cardell E, Doetschman T (1997) TGFbeta2 knockout mice have multiple developmental defects that are non-overlapping with other TGFbeta knockout phenotypes. Development 124(13):2659–2670

    CAS  PubMed  Google Scholar 

  99. Heupel K, Sargsyan V, Plomp JJ, Rickmann M, Varoqueaux F, Zhang W, Krieglstein K (2008) Loss of transforming growth factor-beta 2 leads to impairment of central synapse function. Neural Dev 3:25. https://doi.org/10.1186/1749-8104-3-25

  100. Lindsay ME, Schepers D, Bolar NA, Doyle JJ, Gallo E, Fert-Bober J, Kempers MJE, Fishman EK et al (2012) Loss-of-function mutations in TGFB2 cause a syndromic presentation of thoracic aortic aneurysm. Nat Genet 44(8):992–997

  101. Loeys BL, Chen J, Neptune ER, Judge DP, Podowski M, Holm T, Meyers J, Leitch CC et al (2005) A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat Genet 37(3):275–281. https://doi.org/10.1038/ng1511

  102. Loeys BL, Schwarze U, Holm T, Callewaert BL, Thomas GH, Pannu H, De Backer JF, Oswald GL et al (2006) Aneurysm syndromes caused by mutations in the TGF-β receptor. N Engl J Med 355(8):788–798. https://doi.org/10.1056/NEJMoa055695

  103. Larsson J, Goumans MJ, Sjöstrand LJ, van Roiijen MA, Ward D, Levéen P, Xu X, ten Dijke P et al (2001) Abnormal angiogenesis but intact hematopoietic potential in TGF-β type I receptor-deficient mice. TheEMBO Journal 20(7):1663–1673

  104. Oshima M, Oshima H, biology T-MM (1996) TGF-β receptor type II deficiency results in defects of yolk sac hematopoiesis and vasculogenesis. Dev Biol 197:297–302

    Article  Google Scholar 

  105. Ades LC, Sullivan K, Biggin A, Haan EA, Brett M, Holman KJ, Dixon J, Robertson S et al (2006) FBN1, TGFBR1, and the Marfan-craniosynostosis/mental retardation disorders revisited. Am J Med Genet 140A:1047–1058. https://doi.org/10.1002/ajmg.a.31202

  106. Le Goff C, Mahaut C, Abhyankar A, Goff LW, Vr S, Afenjar A, Destrée A, Rocco M et al (2012) Mutations at a single codon in mad homology 2 domain of SMAD4 cause Myhre syndrome. Nat Genet 44(1):85–88. https://doi.org/10.1038/ng.1016

  107. Caputo V, Cianetti L, Niceta M, Carta C, Ciolfi A, Bocchinfuso G, Carrani E, Dentici ML et al (2012) A restricted spectrum of mutations in the SMAD4 tumor-suppressor gene underlies Myhre syndrome. Am J Hum Genet 90:161–169

  108. Lindor NM, Gunawardena SR, Thibodeau SN (2012) Mutations of SMAD4 account for both LAPS and Myhre syndromes. Am J Med Genet 158A:1520–1521. https://doi.org/10.1002/ajmg.a.35374

    Article  CAS  PubMed  Google Scholar 

  109. Titomanlio L, Marzano MG, Rossi E, D'Armiento M, Brasi DD, Vega GR, Andreucci MV, Orsini AVM et al (2001) Case of Myhre syndrome with autism and peculiar skin histological findings. Am J Med Genet 103:163–165. https://doi.org/10.1002/ajmg.1517

  110. Lin AE, Michot C, Cormier-Daire V, L’Ecuyer TJ, Matherne GP, Barnes BH, Humberson JB, Edmondson AC et al (2016) Gain-of-function mutations in SMAD4 cause a distinctive repertoire of cardiovascular phenotypes in patients with Myhre syndrome. Am J Med Genet 170:2617–2631. https://doi.org/10.1002/ajmg.a.37739

  111. Yi JJ, Berrios J, Newbern JM, Snider WD, Philpot BD, Hahn KM, Zylka MJ (2015) An autism-linked mutation disables phosphorylation control of UBE3A. Cell 162(4):795–807. https://doi.org/10.1016/j.cell.2015.06.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Al-Shami A, Jhaver KG, Vogel P, One W-C (2010) Regulators of the proteasome pathway, Uch37 and Rpn13, play distinct roles in mouse development. PLoS One 5(10):e13654.

  113. Puram SV, Bonni A (2013) Cell-intrinsic drivers of dendrite morphogenesis. Development 140:4657–4671

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  114. Kuslansky Y, Sominsky S, Jackman A, Gamell C, Monahan BJ, Haupt Y, Rosin-Arbesfeld R, Sherman L (2016) Ubiquitin ligase E6AP mediates nonproteolytic polyubiquitylation of β-catenin independent of the E6 oncoprotein. The Journal of General Virology 97(12):3313–3330. https://doi.org/10.1099/jgv.0.000624

    Article  CAS  PubMed  Google Scholar 

  115. Yi JJ, Paranjape SR, Walker MP, Choudhury R, Wolter JM, Fragola G, Emanuele MJ, Major MB et al (2017) The autism-linked UBE3A T485A mutant E3 ubiquitin ligase activates the Wnt/β-catenin pathway by inhibiting the proteasome. J Biol Chem 292(30):12503–12515. https://doi.org/10.1074/jbc.m117.788448

  116. Zheng L, Ding H, Lu Z, Li Y, Pan Y, to Cells N-T (2008) E3 ubiquitin ligase E6AP-mediated TSC2 turnover in the presence and absence of HPV16 E6. Genes Cells 13(3):285–294

    Article  CAS  PubMed  Google Scholar 

  117. Froyen G, Corbett M, Vandewalle J, Jarvela I, Lawrence O, Meldrum C, Bauters M, Govaerts K et al (2008) Submicroscopic duplications of the hydroxysteroid dehydrogenase HSD17B10 and the E3 ubiquitin ligase HUWE1 are associated with mental retardation. Am J Hum Genet 82(2):432–443. https://doi.org/10.1016/j.ajhg.2007.11.002

  118. Srivastava AK, Reviews S-CE (2014) Intellectual disability and autism spectrum disorders: causal genes and molecular mechanisms. Neurosci Biobehav Rev 46:161–174

    Article  CAS  PubMed  Google Scholar 

  119. McCarthy SE, Gillis J, Kramer M, Lihm J, Yoon S, Berstein Y, Mistry M, Pavlidis P et al (2014) De novo mutations in schizophrenia implicate chromatin remodeling and support a genetic overlap with autism and intellectual disability. Mol Psychiatry 19(6):652–658. https://doi.org/10.1038/mp.2014.29

  120. Moortgat S, Berland S, Aukrust I, Maystadt I, Baker L, Benoit V, Caro-Llopis A, Cooper NS et al (2018) HUWE1 variants cause dominant X-linked intellectual disability: a clinical study of 21 patients. European Journal of Human Genetics 26(1):64–74. https://doi.org/10.1038/s41431-017-0038-6

  121. D'Arca D, Zhao X, Xu W, Ramirez-Martinez NC, Iavarone A, Lasorella A (2010) Huwe1 ubiquitin ligase is essential to synchronize neuronal and glial differentiation in the developing cerebellum. Proc Natl Acad Sci U S A 107(13):5875–5880. https://doi.org/10.1073/pnas.0912874107

    Article  PubMed  PubMed Central  Google Scholar 

  122. Zhao C, Deng W, Gage FH (2008) Mechanisms and functional implications of adult neurogenesis. Cell 132(4):645–660. https://doi.org/10.1016/j.cell.2008.01.033

    Article  CAS  PubMed  Google Scholar 

  123. Urbán N, van den Berg DL, Forget A, Andersen J, Demmers JAA, Hunt C, Ayrault O, Guillemot F (2016) Return to quiescence of mouse neural stem cells by degradation of a proactivation protein. Science (New York, NY) 353(6296):292–295. https://doi.org/10.1126/science.aaf4802

    Article  CAS  Google Scholar 

  124. Thompson JW, Nagel J, Hoving S, Gerrits B, Bauer A, Thomas JR, Kirschner MW, Schirle M et al (2014) Quantitative Lys-ϵ-Gly-Gly (diGly) proteomics coupled with inducible RNAi reveals ubiquitin-mediated proteolysis of DNA damage-inducible transcript 4 (DDIT4) by the E3 ligase HUWE1. J Biol Chem 289(42):28942–28955. https://doi.org/10.1074/jbc.M114.573352

  125. de Groot RE, Ganji RS, Bernatik O, Lloyd-Lewis B, Seipel K, Šedová K, Zdráhal Z, Dhople VM et al (2014) Huwe1-mediated ubiquitylation of dishevelled defines a negative feedback loop in the Wnt signaling pathway. Sci Signal 7(317):ra26. https://doi.org/10.1126/scisignal.2004985

  126. Tarpey PS, Raymond FL, O'Meara S, Edkins S, Teague J, Butler A, Dicks E, Stevens C et al (2007) Mutations in CUL4B, which encodes a ubiquitin E3 ligase subunit, cause an X-linked mental retardation syndrome associated with aggressive outbursts, seizures, relative macrocephaly, central obesity, hypogonadism, pes cavus, and tremor. Am J Hum Genet 80(2):345–352. https://doi.org/10.1086/511134

  127. Zou Y, Liu Q, Chen B, Zhang X, Guo C, Zhou H, Li J, Gao G et al (2007) Mutation in CUL4B, which encodes a member of cullin-RING ubiquitin ligase complex, causes X-linked mental retardation. Am J Hum Genet 80(3):561–566. https://doi.org/10.1086/512489

  128. Badura-Stronka M, Jamsheer A, Materna-Kiryluk A, Sowińska A, Kiryluk K, Budny B, Latos-Bieleńska A (2010) A novel nonsense mutation in CUL4B gene in three brothers with X-linked mental retardation syndrome. Clin Genet 77(2):141–144. https://doi.org/10.1111/j.1399-0004.2009.01331.x

    Article  CAS  PubMed  Google Scholar 

  129. Ravn K, Lindquist SG, Nielsen K, Dahm TL, Tümer Z (2012) Deletion of CUL4B leads to concordant phenotype in a monozygotic twin pair. Clin Genet 82(3):292–294. https://doi.org/10.1111/j.1399-0004.2011.01839.x

    Article  CAS  PubMed  Google Scholar 

  130. Londin ER, Adijanto J, Philp N, Novelli A, Vitale E, Perria C, Serra G, Alesi V et al (2014) Donor splice-site mutation in CUL4B is likely cause of X-linked intellectual disability. Am J Med Genet A 164A(9):2294–2299. https://doi.org/10.1002/ajmg.a.36629

  131. Weissbach S, Reinert M-CC, Altmüller J, Krätzner R, Thiele H, Rosenbaum T, Nürnberg P, Gärtner J (2017) A new CUL4B variant associated with a mild phenotype and an exceptional pattern of leukoencephalopathy. Am J Med Genet A 173(10):2803–2807. https://doi.org/10.1002/ajmg.a.38390

    Article  CAS  PubMed  Google Scholar 

  132. Okamoto N, Watanabe M, Naruto T, Matsuda K, Kohmoto T, Saito M, Masuda K, Imoto I (2017) Genome-first approach diagnosed Cabezas syndrome via novel CUL4B mutation detection. Human Genome Variation 4:16045. https://doi.org/10.1038/hgv.2016.45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Broussard J, Ugrasbul-Eksinar F (2019) SAT-287 hypogonadotropic hypogonadism in RPL10 mutation-associated syndromic intellectual disability. Journal of the Endocrine Society 3(Supp. 1):SAT-287. https://doi.org/10.1210/js.2019-SAT-287

    Article  PubMed Central  Google Scholar 

  134. Chen C-YY, Tsai M-SS, Lin C-YY YISS, Chen Y-TT, Lin S-RR, Juan L-WW, Chen Y-TT, Hsu H-MM et al (2012) Rescue of the genetically engineered Cul4b mutant mouse as a potential model for human X-linked mental retardation. Hum Mol Genet 21(19):4270–4285. https://doi.org/10.1093/hmg/dds261

  135. Hu J, Zacharek S, He YJ, … L-H (2008) WD40 protein FBW5 promotes ubiquitination of tumor suppressor TSC2 by DDB1–CUL4–ROC1 ligase. Genes & …. doi:https://doi.org/10.1101/gad.1624008

  136. Fu C, Cawthon B, Clinkscales W, Cerebral … B-A (2011) GABAergic interneuron development and function is modulated by the Tsc1 gene. Cereb Cortex 22(9):2111–2119. doi:https://doi.org/10.1093/cercor/bhr300

  137. He F, Lu D, Jiang B, Wang Y, Liu Q, Liu Q, Shao C, Li X et al (2013) X-linked intellectual disability gene CUL4B targets Jab1/CSN5 for degradation and regulates bone morphogenetic protein signaling. Biochim Biophys Acta 1832(5):595–605. https://doi.org/10.1016/j.bbadis.2013.01.015

  138. Kim B-CC, Lee H-JJ, Park SH, Lee SR, Karpova TS, McNally JG, Felici A, Lee DK et al (2004) Jab1/CSN5, a component of the COP9 signalosome, regulates transforming growth factor beta signaling by binding to Smad7 and promoting its degradation. Mol Cell Biol 24(6):2251–2262. https://doi.org/10.1128/mcb.24.6.2251-2262.2004

  139. Wan M, Cao X, Wu Y, Bai S, Wu L, Shi X, Wang N, Cao X (2002) Jab1 antagonizes TGF-beta signaling by inducing Smad4 degradation. EMBO Rep 3(2):171–176. https://doi.org/10.1093/embo-reports/kvf024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Komander D, Clague MJ, Urbé S (2009) Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol 10(8):550–563. https://doi.org/10.1038/nrm2731

    Article  CAS  PubMed  Google Scholar 

  141. Wilkinson KD (1997) Regulation of ubiquitin-dependent processes by deubiquitinating enzymes. FASEB J 11(14):1245–1256. https://doi.org/10.1096/fasebj.11.14.9409543

    Article  CAS  PubMed  Google Scholar 

  142. Todi SV, Paulson HL (2011) Balancing act: deubiquitinating enzymes in the nervous system. Trends Neurosci 34(7):370–382. https://doi.org/10.1016/j.tins.2011.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Nijman S, Luna-Vargas M, Velds A, Brummelkamp TR, Dirac A, Sixma TK, Bernards R (2005) A genomic and functional inventory of deubiquitinating enzymes. Cell 123(5):773–786. https://doi.org/10.1016/j.cell.2005.11.007

    Article  CAS  PubMed  Google Scholar 

  144. Hao Y-HH, Fountain MD, Fon Tacer K, Xia F, Bi W, Kang S-HLH, Patel A, Rosenfeld JA et al (2015) USP7 acts as a molecular rheostat to promote WASH-dependent endosomal protein recycling and is mutated in a human neurodevelopmental disorder. Mol Cell 59(6):956–969. https://doi.org/10.1016/j.molcel.2015.07.033

  145. Cox JL, Wilder PJ, Gilmore JM, one W-EL (2013) The SOX2-interactome in brain cancer cells identifies the requirement of MSI2 and USP9X for the growth of brain tumor cells. PLoS One 8(5):e62857.

  146. Brown KA, Ham A-JLJ, Clark CN, Meller N, Law BK, Chytil A, Cheng N, Pietenpol JA et al (2008) Identification of novel Smad2 and Smad3 associated proteins in response to TGF-beta1. J Cell Biochem 105(2):596–611. https://doi.org/10.1002/jcb.21860

  147. Wang J, Huo K, Ma L, Tang L, Li D, Huang X, Yuan Y, Li C et al (2011) Toward an understanding of the protein interaction network of the human liver. Mol Syst Biol 7:536. https://doi.org/10.1038/msb.2011.67

  148. Al-Mubarak B, Abouelhoda M, Omar A, AlDhalaan H, Aldosari M, Nester M, Alshamrani HA, El-Kalioby M et al (2017) Whole exome sequencing reveals inherited and de novo variants in autism spectrum disorder: a trio study from Saudi families. Sci Rep 7(1):5679. https://doi.org/10.1038/s41598-017-06033-1

  149. Homan CC, Kumar R, Nguyen L, Haan E, Raymond LF, Abidi F, Raynaud M, Schwartz CE et al (2014) Mutations in USP9X are associated with X-linked intellectual disability and disrupt neuronal cell migration and growth. Am J Hum Genet 94(3):470–478. https://doi.org/10.1016/j.ajhg.2014.02.004

  150. Reijnders M, Zachariadis V, Latour B, Jolly L, Mancini GM, Pfundt R, Wu K, van Ravenswaaij-Arts C et al (2016) De novo loss-of-function mutations in USP9X cause a female-specific recognizable syndrome with developmental delay and congenital malformations. Am J Hum Genet 98(2):373–381. https://doi.org/10.1016/j.ajhg.2015.12.015

  151. Johnson BV, Kumar R, Oishi S, Alexander S, Kasherman M, Vega MS, Ivancevic A, Gardner A et al (2019) Partial loss of USP9X function leads to a male neurodevelopmental and behavioral disorder converging on transforming growth factor β signaling. Biol Psychiatry 87(2):100–112. https://doi.org/10.1016/j.biopsych.2019.05.028

  152. Bridges CR, Tan M-C, Premarathne S, Nanayakkara D, Bellette B, Zencak D, Domingo D, Gecz J et al (2017) USP9X deubiquitylating enzyme maintains RAPTOR protein levels, mTORC1 signalling and proliferation in neural progenitors. Sci Rep 7(1):391. https://doi.org/10.1038/s41598-017-00149-0

  153. Premarathne S, Murtaza M, Matigian N, Jolly LA, Wood SA (2017) Loss of Usp9x disrupts cell adhesion, and components of the Wnt and Notch signaling pathways in neural progenitors. Sci Rep 7(1):8109. https://doi.org/10.1038/s41598-017-05451-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Taya S, Yamamoto T, Kanai-Azuma M, Wood SA, Kaibuchi K (1999) The deubiquitinating enzyme Fam interacts with and stabilizes β-catenin. Genes Cells 4(12):757–767. https://doi.org/10.1046/j.1365-2443.1999.00297.x

    Article  CAS  PubMed  Google Scholar 

  155. Nielsen CP, Jernigan KK, Diggins NL, Webb DJ, MacGurn JA (2019) USP9X deubiquitylates DVL2 to regulate WNT pathway specification. Cell Rep 28(4):1074–108900000. https://doi.org/10.1016/j.celrep.2019.06.083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Dupont S, Mamidi A, Cordenonsi M, Montagner M (2009) FAM/USP9x, a deubiquitinating enzyme essential for TGFβ signaling, controls Smad4 monoubiquitination. FAM/USP9x, a deubiquitinating enzyme essential for TGFβ signaling, controls Smad4 monoubiquitination. Cell 136(1):123–135. https://doi.org/10.1016/j.cell.2008.10.051

    Article  CAS  PubMed  Google Scholar 

  157. Xie Y, Avello M, Schirle M, McWhinnie E, Feng Y, Bric-Furlong E, Wilson C, Nathans R et al (2013) Deubiquitinase FAM/USP9X interacts with the E3 ubiquitin ligase SMURF1 protein and protects it from ligase activity-dependent self-degradation. J Biol Chem 288(5):2976–2985. https://doi.org/10.1074/jbc.M112.430066

  158. Schwickart M, Huang X, Lill JR, Liu J, Ferrando R, French DM, Maecker H, O’Rourke K et al (2009) Deubiquitinase USP9X stabilizes MCL1 and promotes tumour cell survival. Nature 463(7277):103–107. https://doi.org/10.1038/nature08646

  159. Gomez-Bougie P, Ménoret E, Juin P, Dousset C, Pellat-Deceunynck C, Amiot M (2011) Noxa controls mule-dependent Mcl-1 ubiquitination through the regulation of the Mcl-1/USP9X interaction. Biochem Biophys Res Commun 413(3):460–464. https://doi.org/10.1016/j.bbrc.2011.08.118

    Article  CAS  PubMed  Google Scholar 

  160. Nathan JA, Sengupta S, Wood SA, Admon A, Markson G, Sanderson C, Lehner PJ (2008) The ubiquitin E3 ligase MARCH7 is differentially regulated by the deubiquitylating enzymes USP7 and USP9X. Traffic 9(7):1130–1145. https://doi.org/10.1111/j.1600-0854.2008.00747.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Edelmann MJ, Nicholson B, Kessler BM (2011) Pharmacological targets in the ubiquitin system offer new ways of treating cancer, neurodegenerative disorders and infectious diseases. Expert Rev Mol Med 13. https://doi.org/10.1017/S1462399411002031

  162. Adams J (2003) Potential for proteasome inhibition in the treatment of cancer. Drug Discov Today 8(7):307–315

    Article  CAS  PubMed  Google Scholar 

  163. Chen RA, Tu Y, Cao Y, Liu L, Liang Y (2011) Bortezomib-dexamethasone or vincristine-doxorubicin-dexamethasone as induction therapy followed by thalidomide as maintenance therapy in untreated multiple myeloma patients. The Journal of International Medical Research 39(5):1975–1984. https://doi.org/10.1177/147323001103900544

    Article  CAS  PubMed  Google Scholar 

  164. Kouroukis CT, Fernandez LA, Crump M, Gascoyne RD, Chua NS, Buckstein R, Turner R, Assouline S et al (2011) A phase II study of bortezomib and gemcitabine in relapsed mantle cell lymphoma from the National Cancer Institute of Canada clinical trials group (IND 172). Leuk Lymphoma 52(3):394–399. https://doi.org/10.3109/10428194.2010.546015

  165. Song MS, Salmena L, Carracedo A, Egia A, Lo-Coco F, Teruya-Feldstein J, Pandolfi PP (2008) The deubiquitinylation and localization of PTEN are regulated by a HAUSP-PML network. Nature 455(7214):813–817. https://doi.org/10.1038/nature07290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Colland F (2010) The therapeutic potential of deubiquitinating enzyme inhibitors. Biochem Soc Trans 38(Pt 1):137–143. https://doi.org/10.1042/BST0380137

    Article  CAS  PubMed  Google Scholar 

  167. Zeng L-HH XL, Gutmann DH, Wong M (2008) Rapamycin prevents epilepsy in a mouse model of tuberous sclerosis complex. Ann Neurol 63(4):444–453. https://doi.org/10.1002/ana.21331

    Article  CAS  Google Scholar 

  168. Meikle L, Pollizzi K, Egnor A, Kramvis I, Lane H, Sahin M, Kwiatkowski DJ (2008) Response of a neuronal model of tuberous sclerosis to mammalian target of rapamycin (mTOR) inhibitors: effects on mTORC1 and Akt signaling lead to improved survival and function. J Neurosci 28(21):5422–5432. https://doi.org/10.1523/JNEUROSCI.0955-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Choi Y-JJ, Di Nardo A, Kramvis I, Meikle L, Kwiatkowski DJ, Sahin M, He X (2008) Tuberous sclerosis complex proteins control axon formation. Genes Dev 22(18):2485–2495. https://doi.org/10.1101/gad.1685008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Magri L, Cambiaghi M, Cominelli M, Alfaro-Cervello C, Cursi M, Pala M, Bulfone A, Garcìa-Verdugo JM et al (2011) Sustained activation of mTOR pathway in embryonic neural stem cells leads to development of tuberous sclerosis complex-associated lesions. Cell Stem Cell 9(5):447–462. https://doi.org/10.1016/j.stem.2011.09.008

  171. Guy J, Gan J, Selfridge J, Cobb S, Bird A (2007) Reversal of neurological defects in a mouse model of Rett syndrome. Science 315(5815):1143–1147. https://doi.org/10.1126/science.1138389

    Article  PubMed  PubMed Central  Google Scholar 

  172. Giacometti E, Luikenhuis S, Beard C, Jaenisch R (2007) Partial rescue of MeCP2 deficiency by postnatal activation of MeCP2. Proc Natl Acad Sci U S A 104(6):1931–1936. https://doi.org/10.1073/pnas.0610593104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. McBride SM, Choi CH, Wang Y, Liebelt D, Braunstein E, Ferreiro D, Sehgal A, Siwicki KK et al (2005) Pharmacological rescue of synaptic plasticity, courtship behavior, and mushroom body defects in a Drosophila model of fragile X syndrome. Neuron 45(5):753–764. https://doi.org/10.1016/j.neuron.2005.01.038

Download references

Funding

This work was supported by SFARI Explorer Grant 527556 to M. Piper and S. Wood.

Author information

Authors and Affiliations

Authors

Contributions

MK, MP, and SW wrote the manuscript. SP and TB provided feedback for drafts. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Michael Piper.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasherman, M.A., Premarathne, S., Burne, T.H.J. et al. The Ubiquitin System: a Regulatory Hub for Intellectual Disability and Autism Spectrum Disorder. Mol Neurobiol 57, 2179–2193 (2020). https://doi.org/10.1007/s12035-020-01881-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-01881-x

Keywords

Navigation