Skip to main content
Log in

SNAP25 Gene Polymorphisms Protect Against Parkinson’s Disease and Modulate Disease Severity in Patients

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is a α-synucleinopathy in which intracellular aggregates of α-synuclein (α-syn) result in neurodegeneration and in the impairment of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex-mediated release of neurotransmitters. SNAP25 is a SNARE complex component: its concentration is increased in the cerebrospinal fluid of PD patients and this is related to the severity of cognitive and motor symptoms. Five SNAP25 single-nucleotide polymorphisms (SNPs) that modulate gene expression and were described to play a role in neurologic conditions (rs363050, rs363039, rs363043, rs3746544, and rs1051312) were analyzed in a cohort of 412 sporadic Italian PD patients and 1103 healthy controls (HC) in order to identify possible correlation with the disease. The SNAP25 rs1051312 C allele and CC genotype confer protection against PD onset, in particular in males (p = 0.003, OR(95%CI) = 0.67(0.51–0.88)) (pc = 0.008, OR(95%CI) = 0.28(0.10–0.70)). Co-segregation analyses revealed that the rs1051312 effect was reinforced when present within the rs363043 C-rs3746544 T-rs1051312 C haplotype (p = 3.3 × 10−4, OR = 0.47, 95%CI = 0.31–0.72), once again in males. Finally, rs363039 influenced age at onset (p = 0.02) and MMSE (Mini-Mental State Examination) scores (p = 0.01). The SNAP25 SNPs analyzed herein modulate gene expression at different levels as they are involved in binding miRNA and transcription factors; this suggests a possible synergistic effect of SNAP25 SNPs in the pathogenesis of PD. A replication in a larger and independent sample will help to further explore this hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Schneider SA, Obeso JA (2015) Clinical and pathological features of Parkinson's disease. Curr Top Behav Neurosci 22:205–220. https://doi.org/10.1007/7854_2014_317

    Article  CAS  PubMed  Google Scholar 

  2. Aarsland D (2016) Cognitive impairment in Parkinson's disease and dementia with Lewy bodies. Parkinsonism Relat Disord 22(Suppl 1):S144–S148. https://doi.org/10.1016/j.parkreldis.2015.09.034.

    Article  PubMed  Google Scholar 

  3. Klein C, Westenberger A (2012) Genetics of Parkinson's disease. Cold Spring Harb Perspect Med 2(1):a008888. https://doi.org/10.1101/cshperspect.a008888

    Article  PubMed  PubMed Central  Google Scholar 

  4. Yasuda T, Nakata Y, Mochizuki H (2013) α-Synuclein and neuronal cell death. Mol Neurobiol 47(2):466–483. https://doi.org/10.1007/s12035-012-8327-0

    Article  CAS  PubMed  Google Scholar 

  5. Burré J, Sharma M, Tsetsenis T, Buchman V, Etherton MR, Südhof TC (2010) Alpha-synuclein promotes SNARE-complex assembly in vivo and in vitro. Science 329(5999):1663–1667. https://doi.org/10.1126/science.1195227.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Nemani VM, Lu W, Berge V, Nakamura K, Onoa B, Lee MK, Chaudhry FA, Nicoll RA et al (2010) Increased expression of alpha-synuclein reduces neurotransmitter release by inhibiting synaptic vesicle reclustering after endocytosis. Neuron 65(1):66–79

    Article  CAS  Google Scholar 

  7. Gundersen CB (2017) The structure of the synaptic vesicle-plasma membrane interface constrains SNARE models of rapid, synchronous exocytosis at nerve terminals. Front Mol Neurosci 10:48. https://doi.org/10.3389/fnmol.2017.00048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Burgoyne RD, Morgan A (2011) Chaperoning the SNAREs: A role in preventing neurodegeneration? Nat Cell Biol 13(1):8–9. https://doi.org/10.1038/ncb0111-8

    Article  CAS  PubMed  Google Scholar 

  9. Guerini FR, Bolognesi E, Chiappedi M, Manca S, Ghezzo A, Agliardi C, Sotgiu S, Usai S et al (2011) SNAP-25 single nucleotide polymorphisms are associated with hyperactivity in autism spectrum disorders. Pharmacol Res 64(3):283–288. https://doi.org/10.1016/j.phrs.2011.03.015

    Article  CAS  PubMed  Google Scholar 

  10. Gao Q, Liu L, Chen Y, Li H, Yang L, Wang Y, Qian Q (2015) Synaptosome-related (SNARE) genes and their interactions contribute to the susceptibility and working memory of attention-deficit/hyperactivity disorder in males. Prog Neuro-Psychopharmacol Biol Psychiatry 57:132–139. https://doi.org/10.1016/j.pnpbp.2014.11.001

    Article  CAS  Google Scholar 

  11. Honer WG, Young CE (2004) Presynaptic proteins and schizophrenia. Int Rev Neurobiol 59:175–199. https://doi.org/10.1016/S0074-7742(04)59007-4

    Article  CAS  PubMed  Google Scholar 

  12. Ikemoto A, Nakamura S, Akiguchi I, Hirano A (2002) Differential expression between synaptic vesicle proteins and presynaptic plasma membrane proteins in the anterior horn of amyotrophic lateral sclerosis. Acta Neuropathol 103(2):179–187. https://doi.org/10.1007/s004010100449

    Article  CAS  PubMed  Google Scholar 

  13. Guerini FR, Farina E, Costa AS, Baglio F, Saibene FL, Margaritella N, Calabrese E, Zanzottera M et al (2016) ApoE and SNAP-25 polymorphisms predict the outcome of multidimensional stimulation therapy rehabilitation in Alzheimer's disease. Neurorehabil Neural Repair 30(9):883–893. https://doi.org/10.1177/1545968316642523

    Article  PubMed  Google Scholar 

  14. Garcia-Reitböck P, Anichtchik O, Bellucci A, Iovino M, Ballini C, Fineberg E, Ghetti B, Della Corte L et al (2010) SNARE protein redistribution and synaptic failure in a transgenic mouse model of Parkinson's disease. Brain 133(7):2032–2044. https://doi.org/10.1093/brain/awq132

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gosso MF, de Geus EJ, Polderman TJ, Boomsma DI, Heutink P, Posthuma D (2008) Common variants underlying cognitive ability: Further evidence for association between the SNAP-25 gene and cognition using a family-based study in two independent Dutch cohorts. Genes Brain Behav 7(3):355–364. https://doi.org/10.1038/sj.mp.4001868

    Article  CAS  PubMed  Google Scholar 

  16. Braida D, Guerini FR, Ponzoni L, Corradini I, De Astis S, Pattini L, Bolognesi E, Benfante R et al (2015) Association between SNAP-25 gene polymorphisms and cognition in autism: Functional consequences and potential therapeutic strategies. Transl Psychiatry 5:e500. https://doi.org/10.1038/tp.2014.136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hoehn MM, Yahr MD (1967) Parkinsonism: onset, progression and mortality. Neurology 17:427–442

    Article  CAS  Google Scholar 

  18. Schwab RS, jr EAC (1969) Amantadine HCL (Symmetrel) and its relation to Levo-Dopa in the treatment of Parkinson's disease. Trans Am Neurol Assoc 94:85–90

    CAS  PubMed  Google Scholar 

  19. Folstein MF, Folstein SE, McHugh PR (1975) ʽʽMini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198

    Article  CAS  Google Scholar 

  20. Öner Ö, Akın A, Herken H, Erdal ME, Çiftçi K, Ay ME, Bicer D, Öncü B et al (2011) Association among SNAP-25 gene DdeI and MnlI polymorphisms and hemodynamic changes during methylphenidate use: A functional near-infrared spectroscopy study. J Atten Disord 15(8):628–637. https://doi.org/10.1177/1087054710374597

    Article  PubMed  Google Scholar 

  21. Elbaz A, Bower JH, Maraganore DM, McDonnell SK, Peterson BJ, Ahlskog JE, Schaid DJ, Rocca WA (2002) Risk tables for parkinsonism and Parkinson's disease. J Clin Epidemiol 55(1):25–31

    Article  Google Scholar 

  22. Spillantini MG, Crowther RA, Jakes R, Hasegawa M, Goedert M (1998) Alpha-Synuclein in filamentous inclusions of Lewy bodies from Parkinson's disease and dementia with Lewy bodies. Proc Natl Acad Sci U S A 95:6469–6473

    Article  CAS  Google Scholar 

  23. Lai Y, Kim S, Varkey J, Lou X, Song JK, Diao J, Langen R, Shin YK (2014) Nonaggregated α-synuclein influences SNARE-dependent vesicle docking via membrane binding. Biochemistry 53(24):3889–3896. https://doi.org/10.1021/bi5002536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bereczki E, Bogstedt A, Höglund K, Tsitsi P, Brodin L, Ballard C, Svenningsson P, Aarsland D (2017) Synaptic proteins in CSF relate to Parkinson's disease stage markers. NPJ Parkinsons Dis 3(7):1149–1158. https://doi.org/10.1016/j.jalz.2016.04.005.

    Article  Google Scholar 

  25. Ye C, Hu Z, Wu E, Yang X, Buford UJ, Guo Z, Saveanu RV (2016) Two SNAP-25 genetic variants in the binding site of multiple microRNAs and susceptibility of ADHD: A meta-analysis. J Psychiatr Res 81:56–62. https://doi.org/10.1016/j.jpsychires.2016.06.007

    Article  PubMed  Google Scholar 

  26. Chen K, Song F, Calin GA, Wei Q, Hao X, Zhang W (2008) Polymorphisms in microRNA targets: A gold mine for molecular epidemiology. Carcinogenesis 29(7):1306–1311. https://doi.org/10.1093/carcin/bgn116

    Article  CAS  PubMed  Google Scholar 

  27. Ghanbari M, Darweesh SK, de Looper HW, van Luijn MM, Hofman A, Ikram MA, Franco OH, Erkeland SJ (2016) Genetic variants in microRNAs and their binding sites are associated with the risk of Parkinson disease. Hum Mutat 37(3):292–300. https://doi.org/10.1002/humu.22943

    Article  CAS  PubMed  Google Scholar 

  28. Söderqvist S, McNab F, Peyrard-Janvid M, Matsson H, Humphreys K, Kere J, Klingberg T (2010) The SNAP25 gene is linked to working memory capacity and maturation of the posterior cingulate cortex during childhood. Biol Psychiatry 68(12):1120–1125. https://doi.org/10.1016/j.biopsych.2010.07.036

    Article  CAS  PubMed  Google Scholar 

  29. Guerini FR, Agliardi C, Sironi M, Arosio B, Calabrese E, Zanzottera M, Bolognesi E, Ricci C (2014) Possible association between SNAP-25 single nucleotide polymorphisms and alterations of categorical fluency and functional MRI parameters in Alzheimer's disease. J Alzheimers Dis 42(3):1015–1028. https://doi.org/10.3233/JAD-140057

    Article  CAS  PubMed  Google Scholar 

  30. Ma C, Liu Y, Neumann S, Gao X (2017) Nicotine from cigarette smoking and diet and Parkinson disease: A review. Transl Neurodegener 6:18. https://doi.org/10.1186/s40035-017-0090-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Institutes of Health [Ricerca Corrente 2015].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Agliardi.

Ethics declarations

The Ethical Committees of the three institutions approved the study; all the participants gave informed consent.

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agliardi, C., Guerini, F.R., Zanzottera, M. et al. SNAP25 Gene Polymorphisms Protect Against Parkinson’s Disease and Modulate Disease Severity in Patients. Mol Neurobiol 56, 4455–4463 (2019). https://doi.org/10.1007/s12035-018-1386-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-1386-0

Keywords

Navigation