Skip to main content

Advertisement

Log in

Resveratrol Preconditioning Induces Genomic and Metabolic Adaptations within the Long-Term Window of Cerebral Ischemic Tolerance Leading to Bioenergetic Efficiency

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Neuroprotective agents administered post-cerebral ischemia have failed so far in the clinic to promote significant recovery. Thus, numerous efforts were redirected toward prophylactic approaches such as preconditioning as an alternative therapeutic strategy. Our laboratory has revealed a novel long-term window of cerebral ischemic tolerance mediated by resveratrol preconditioning (RPC) that lasts for 2 weeks in mice. To identify its mediators, we conducted an RNA-seq experiment on the cortex of mice 2 weeks post-RPC, which revealed 136 differentially expressed genes. The majority of genes (116/136) were downregulated upon RPC and clustered into biological processes involved in transcription, synaptic signaling, and neurotransmission. The downregulation in these processes was reminiscent of metabolic depression, an adaptation used by hibernating animals to survive severe ischemic states by downregulating energy-consuming pathways. Thus, to assess metabolism, we used a neuronal-astrocytic co-culture model and measured the cellular respiration rate at the long-term window post-RPC. Remarkably, we observed an increase in glycolysis and mitochondrial respiration efficiency upon RPC. We also observed an increase in the expression of genes involved in pyruvate uptake, TCA cycle, and oxidative phosphorylation, all of which indicated an increased reliance on energy-producing pathways. We then revealed that these nuclear and mitochondrial adaptations, which reduce the reliance on energy-consuming pathways and increase the reliance on energy-producing pathways, are epigenetically coupled through acetyl-CoA metabolism and ultimately increase baseline ATP levels. This increase in ATP would then allow the brain, a highly metabolic organ, to endure prolonged durations of energy deprivation encountered during cerebral ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Clarke DD, Sokoloff L (1999) Circulation and energy metabolism of the brain. In: Siegel GJ et al (eds) Basic neurochemistry, 6th edition molecular, cellular and medical aspects. Lippincott-Raven, Philadelphia, pp. 637–669

    Google Scholar 

  2. Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, de Ferranti SD, Floyd J et al (2017) Heart Disease and Stroke Statistics—2017 Update: A Report From the American Heart Association. Circulation 135(10):e146–e603

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sims NR, Muyderman H (2010) Mitochondria, oxidative metabolism and cell death in stroke. Biochim Biophys Acta 1802(1):80–91

    Article  CAS  PubMed  Google Scholar 

  4. Kikuchi K, Tanaka E, Murai Y, Tancharoen S (2014) Clinical trials in acute ischemic stroke. CNS Drugs 28(10):929–938

    Article  CAS  PubMed  Google Scholar 

  5. Minnerup J, Sutherland BA, Buchan AM, Kleinschnitz C (2012) Neuroprotection for stroke: current status and future perspectives. Int J Mol Sci 13(9):11753–11772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lansberg MG, Bluhmki E, Thijs VN (2009) Efficacy and safety of tissue plasminogen activator 3 to 4.5 hours after acute ischemic stroke: a metaanalysis. Stroke 40(7):2438–2441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Khoury N, Koronowski KB, Perez-Pinzon MA (2016) Long-term window of ischemic tolerance: an evolutionarily conserved form of metabolic plasticity regulated by epigenetic modifications? J Neurol Neuromedicine 1(2):6–12

    Article  PubMed  PubMed Central  Google Scholar 

  8. Raval AP, Dave KR, Perez-Pinzon MA (2006) Resveratrol mimics ischemic preconditioning in the brain. J Cereb Blood Flow Metab 26(9):1141–1147

    Article  CAS  PubMed  Google Scholar 

  9. Koronowski KB, Dave KR, Saul I, Camarena V, Thompson JW, Neumann JT, Young JI, Perez-Pinzon MA (2015) Resveratrol preconditioning induces a novel extended window of ischemic tolerance in the mouse brain. Stroke 46(8):2293–2298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Koronowski KB, Khoury N, Saul I, Loris ZB, Cohan CH, Stradecki-Cohan HM, Dave KR, Young JI et al (2017) Neuronal SIRT1 (silent information regulator 2 homologue 1) regulates glycolysis and mediates resveratrol-induced ischemic tolerance. Stroke 48(11):3117–3125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Narayanan SV, Dave KR, Saul I, Perez-Pinzon MA (2015) Resveratrol preconditioning protects against cerebral ischemic injury via nuclear erythroid 2-related factor 2. Stroke 46(6):1626–1632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Morris-Blanco KC, Cohan CH, Neumann JT, Sick TJ, Perez-Pinzon MA (2014) Protein kinase C epsilon regulates mitochondrial pools of Nampt and NAD following resveratrol and ischemic preconditioning in the rat cortex. J Cereb Blood Flow Metab 34(6):1024–1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Della-Morte D, Dave KR, DeFazio RA, Bao YC, Raval AP, Perez-Pinzon MA (2009) Resveratrol pretreatment protects rat brain from cerebral ischemic damage via a sirtuin 1-uncoupling protein 2 pathway. Neuroscience 159(3):993–1002

    Article  CAS  PubMed  Google Scholar 

  14. Stowe AM, Altay T, Freie AB, Gidday JM (2011) Repetitive hypoxia extends endogenous neurovascular protection for stroke. Ann Neurol 69(6):975–985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cox-Limpens KE, Gavilanes AW, Zimmermann LJ, Vles JS (2014) Endogenous brain protection: what the cerebral transcriptome teaches us. Brain Res 1564:85–100

    Article  CAS  PubMed  Google Scholar 

  16. Narayanan SV, Dave KR, Perez-Pinzon MA (2013) Ischemic preconditioning and clinical scenarios. Curr Opin Neurol 26(1):1–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Seshadri S, Beiser A, Kelly-Hayes M, Kase CS, Au R, Kannel WB, Wolf PA (2006) The lifetime risk of stroke: estimates from the Framingham study. Stroke 37(2):345–350

    Article  PubMed  Google Scholar 

  18. Barger JL, Kayo T, Vann JM, Arias EB, Wang J, Hacker TA, Wang Y, Raederstorff D et al (2008) A low dose of dietary resveratrol partially mimics caloric restriction and retards aging parameters in mice. PLoS One 3(6):e2264

    Article  PubMed  PubMed Central  Google Scholar 

  19. Thomas J, Garg ML, Smith DW (2013) Dietary supplementation with resveratrol and/or docosahexaenoic acid alters hippocampal gene expression in adult C57Bl/6 mice. J Nutr Biochem 24(10):1735–1740

    Article  CAS  PubMed  Google Scholar 

  20. Stenzel-Poore MP, Stevens SL, Xiong Z, Lessov NS, Harrington CA, Mori M, Meller R, Rosenzweig HL et al (2003) Effect of ischaemic preconditioning on genomic response to cerebral ischaemia: similarity to neuroprotective strategies in hibernation and hypoxia-tolerant states. Lancet 362(9389):1028–1037

    Article  CAS  PubMed  Google Scholar 

  21. Stenzel-Poore MP, Stevens SL, Simon RP (2004) Genomics of preconditioning. Stroke 35(11 Suppl 1):2683–2686

    Article  CAS  PubMed  Google Scholar 

  22. Gao D, Huang T, Jiang X, Hu S, Zhang L, Fei Z (2014) Resveratrol protects primary cortical neuron cultures from transient oxygen-glucose deprivation by inhibiting MMP-9. Mol Med Rep 9(6):2197–2204

    Article  CAS  PubMed  Google Scholar 

  23. Huang T, Gao D, Jiang X, Hu S, Zhang L, Fei Z (2014) Resveratrol inhibits oxygen-glucose deprivation-induced MMP-3 expression and cell apoptosis in primary cortical cells via the NF-kappaB pathway. Mol Med Rep 10(2):1065–1071

    Article  CAS  PubMed  Google Scholar 

  24. Tang F, Guo S, Liao H, Yu P, Wang L, Song X, Chen J, Yang Q (2017) Resveratrol enhances neurite outgrowth and synaptogenesis via sonic hedgehog signaling following oxygen-glucose deprivation/reoxygenation injury. Cell Physiol Biochem 43(2):852–869

    Article  CAS  PubMed  Google Scholar 

  25. Herculano-Houzel S, Mota B, Lent R (2006) Cellular scaling rules for rodent brains. Proc Natl Acad Sci U S A 103(32):12138–12143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kim-Han JS, Dugan LL (2005) Mitochondrial uncoupling proteins in the central nervous system. Antioxid Redox Signal 7(9–10):1173–1181

    Article  CAS  PubMed  Google Scholar 

  27. Caruso F, Mendoza L, Castro P, Cotoras M, Aguirre M, Matsuhiro B, Isaacs M, Rossi M et al (2011) Antifungal activity of resveratrol against Botrytis cinerea is improved using 2-furyl derivatives. PLoS One 6(10):e25421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gledhill JR, Montgomery MG, Leslie AG, Walker JE (2007) Mechanism of inhibition of bovine F1-ATPase by resveratrol and related polyphenols. Proc Natl Acad Sci U S A 104(34):13632–13637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zheng J, Ramirez VD (2000) Inhibition of mitochondrial proton F0F1-ATPase/ATP synthase by polyphenolic phytochemicals. Br J Pharmacol 130(5):1115–1123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dave KR, Christian SL, Perez-Pinzon MA, Drew KL (2012) Neuroprotection: lessons from hibernators. Comp Biochem Physiol B Biochem Mol Biol 162(1–3):1–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lutz PL, Nilsson GE, Perez-Pinzon MA (1996) Anoxia tolerant animals from a neurobiological perspective. Comp Biochem Physiol B Biochem Mol Biol 113(1):3–13

    Article  CAS  PubMed  Google Scholar 

  32. Storey KB, Storey JM (2010) Metabolic rate depression: the biochemistry of mammalian hibernation. Adv Clin Chem 52:77–108

    Article  CAS  PubMed  Google Scholar 

  33. Scornavacca G, Gesuete R, Orsini F, Pastorelli R, Fanelli R, de Simoni MG, Airoldi L (2012) Proteomic analysis of mouse brain cortex identifies metabolic down-regulation as a general feature of ischemic pre-conditioning. J Neurochem 122(6):1219–1229

    Article  CAS  PubMed  Google Scholar 

  34. Navarro G, Martinez-Pinilla E, Sanchez-Melgar A, Ortiz R, Noe V, Martin M, Ciudad C, Franco R (2017) A genomics approach identifies selective effects of trans-resveratrol in cerebral cortex neuron and glia gene expression. PLoS One 12(4):e0176067

    Article  PubMed  PubMed Central  Google Scholar 

  35. Stapels M, Piper C, Yang T, Li M, Stowell C, Xiong ZG, Saugstad J, Simon RP et al (2010) Polycomb group proteins as epigenetic mediators of neuroprotection in ischemic tolerance. Sci Signal 3(111):ra15

    Article  PubMed  Google Scholar 

  36. Neumann JT, Thompson JW, Raval AP, Cohan CH, Koronowski KB, Perez-Pinzon MA (2015) Increased BDNF protein expression after ischemic or PKC epsilon preconditioning promotes electrophysiologic changes that lead to neuroprotection. J Cereb Blood Flow Metab 35(1):121–130

    Article  CAS  PubMed  Google Scholar 

  37. DeFazio RA, Raval AP, Lin HW, Dave KR, Della-Morte D, Perez-Pinzon MA (2009) GABA synapses mediate neuroprotection after ischemic and epsilonPKC preconditioning in rat hippocampal slice cultures. J Cereb Blood Flow Metab 29(2):375–384

    Article  CAS  PubMed  Google Scholar 

  38. Lei M, Dong D, Mu S, Pan YH, Zhang S (2014) Comparison of brain transcriptome of the greater horseshoe bats (Rhinolophus ferrumequinum) in active and torpid episodes. PLoS One 9(9):e107746

    Article  PubMed  PubMed Central  Google Scholar 

  39. Cohan CH, Stradecki-Cohan HM, Morris-Blanco KC, Khoury N, Koronowski KB, Youbi M, Wright CB, Perez-Pinzon MA (2017) Protein kinase C epsilon delays latency until anoxic depolarization through arc expression and GluR2 internalization. J Cereb Blood Flow Metab 37(12):3774–3788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Salin K, Auer SK, Rey B, Selman C, Metcalfe NB (2015) Variation in the link between oxygen consumption and ATP production, and its relevance for animal performance. Proc Biol Sci 282(1812):20151028

    Article  PubMed  PubMed Central  Google Scholar 

  41. Shi L, Tu BP (2015) Acetyl-CoA and the regulation of metabolism: mechanisms and consequences. Curr Opin Cell Biol 33:125–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wellen KE, Hatzivassiliou G, Sachdeva UM, Bui TV, Cross JR, Thompson CB (2009) ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324(5930):1076–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhao S, Torres A, Henry RA, Trefely S, Wallace M, Lee JV, Carrer A, Sengupta A et al (2016) ATP-citrate Lyase controls a glucose-to-acetate metabolic switch. Cell Rep 17(4):1037–1052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Choudhary C, Weinert BT, Nishida Y, Verdin E, Mann M (2014) The growing landscape of lysine acetylation links metabolism and cell signalling. Nat Rev Mol Cell Biol 15(8):536–550

    Article  CAS  PubMed  Google Scholar 

  45. Chung JH, Manganiello V, Dyck JR (2012) Resveratrol as a calorie restriction mimetic: therapeutic implications. Trends Cell Biol 22(10):546–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, Chung P et al (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425(6954):191–196

    Article  CAS  PubMed  Google Scholar 

  47. de Oliveira MR, Nabavi SF, Manayi A, Daglia M, Hajheydari Z, Nabavi SM (2016) Resveratrol and the mitochondria: from triggering the intrinsic apoptotic pathway to inducing mitochondrial biogenesis, a mechanistic view. Biochim Biophys Acta 1860(4):727–745

    Article  PubMed  Google Scholar 

  48. Beher D, Wu J, Cumine S, Kim KW, Lu SC, Atangan L, Wang M (2009) Resveratrol is not a direct activator of SIRT1 enzyme activity. Chem Biol Drug Des 74(6):619–624

    Article  CAS  PubMed  Google Scholar 

  49. Kaeberlein M, McDonagh T, Heltweg B, Hixon J, Westman EA, Caldwell SD, Napper A, Curtis R et al (2005) Substrate-specific activation of sirtuins by resveratrol. J Biol Chem 280(17):17038–17045

    Article  CAS  PubMed  Google Scholar 

  50. Dasgupta B, Milbrandt J (2007) Resveratrol stimulates AMP kinase activity in neurons. Proc Natl Acad Sci U S A 104(17):7217–7222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Canto C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, Elliott PJ, Puigserver P et al (2009) AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458(7241):1056–1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Madrigal-Perez LA, Ramos-Gomez M (2016) Resveratrol inhibition of cellular respiration: new paradigm for an old mechanism. Int J Mol Sci 17(3):368

    Article  PubMed  PubMed Central  Google Scholar 

  53. Tang BL (2010) Resveratrol is neuroprotective because it is not a direct activator of Sirt1-a hypothesis. Brain Res Bull 81(4–5):359–361

    Article  CAS  PubMed  Google Scholar 

  54. Adak T, Samadi A, Ünal AZ, Sabuncuoğlu S (2018) A reappraisal on metformin. Regul Toxicol Pharmacol 92:324–332

    Article  CAS  PubMed  Google Scholar 

  55. Arbelaez-Quintero I, Palacios M (2017) To use or not to use metformin in cerebral ischemia: a review of the application of metformin in stroke rodents. Stroke Res Treat 2017:9756429

    PubMed  PubMed Central  Google Scholar 

  56. Cheng YY, Leu HB, Chen TJ, Chen CL, Kuo CH, Lee SD, Kao CL (2014) Metformin-inclusive therapy reduces the risk of stroke in patients with diabetes: a 4-year follow-up study. J Stroke Cerebrovasc Dis 23(2):e99–e105

    Article  PubMed  Google Scholar 

  57. (1998) Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK prospective diabetes study (UKPDS) group. Lancet 352(9131)854–65

  58. Riepe MW, Esclaire F, Kasischke K, Schreiber S, Nakase H, Kempski O, Ludolph AC, Dirnagl U et al (1997) Increased hypoxic tolerance by chemical inhibition of oxidative phosphorylation: “chemical preconditioning”. J Cereb Blood Flow Metab 17(3):257–264

    Article  CAS  PubMed  Google Scholar 

  59. Busija DW, Gaspar T, Domoki F, Katakam PV, Bari F (2008) Mitochondrial-mediated suppression of ROS production upon exposure of neurons to lethal stress: mitochondrial targeted preconditioning. Adv Drug Deliv Rev 60(13–14):1471–1477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jain IH, Zazzeron L, Goli R, Alexa K, Schatzman-Bone S, Dhillon H, Goldberger O, Peng J et al (2016) Hypoxia as a therapy for mitochondrial disease. Science 352(6281):54–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ferrari M, Jain IH, Goldberger O, Rezoagli E, Thoonen R, Cheng KH, Sosnovik DE, Scherrer-Crosbie M et al (2017) Hypoxia treatment reverses neurodegenerative disease in a mouse model of Leigh syndrome. Proc Natl Acad Sci U S A 114(21):E4241–E4250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Arroyo JD, Jourdain AA, Calvo SE, Ballarano CA, Doench JG, Root DE, Mootha VK (2016) A genome-wide CRISPR death screen identifies genes essential for oxidative phosphorylation. Cell Metab 24(6):875–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Velmeshev D, Magistri M, Faghihi MA (2013) Expression of non-protein-coding antisense RNAs in genomic regions related to autism spectrum disorders. Mol Autism 4(1):32

    Article  PubMed  PubMed Central  Google Scholar 

  64. Magistri M, Khoury N, Mazza EM, Velmeshev D, Lee JK, Bicciato S, Tsoulfas P, Faghihi MA (2016) A comparative transcriptomic analysis of astrocytes differentiation from human neural progenitor cells. Eur J Neurosci 44(10):2858–2870

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge Claudia Sofia Pereira and Tania Arguello for their help with the Seahorse Biosciences experiments and Isabel Saul for her help with animal blinding and injections.

Funding

This work was supported by the NIH/NINDS grants NS45676, NS054147, NS097658, and NS34773 (to M.A.P.P.), the American Heart Association (AHA) predoctoral award 16PRE29170004 (to N.K.), the NIH F31 predoctoral award NS089356-01A1 (to K.B.K.), and the Lois Pope LIFE Foundation Fellowship (to N.K. and K.B.K.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel A. Perez-Pinzon.

Electronic supplementary material

Supplementary Fig. 1

RPC increases protein levels of ARC at the long-term window post RPC in vivo. a Western blot analysis showing protein levels of ARC and ACTB in the cortex of mice 2 weeks post-RPC. b Quantification of the protein levels of ARC relative to ACTB based on the western blot analysis results. (PNG 124 kb)

High resolution image (TIF 316 kb)

Supplementary Fig. 2

Publically available datasets involving the transcriptomic analysis of mice brains after resveratrol administration. a In the study by Barger et al. in 2008, 30-month-old mice were fed 5 mg/kg resveratrol for 14 months after which their neocortex was subject to a microarray analysis. After analyzing their results using the GEO (Gene Expression Omnibus) tool (GEO2R), we identified 700 differentially expressed genes among which the majority of genes including 473 (67.6%) were significantly downregulated and only 227 (32.4%) genes were upregulated. b In a similar study by Thomas et al. in 2013, 8-week-old mice were fed a much higher dose of resveratrol consisting of 50 mg/kg per day for 6 weeks after which their hippocampus was subject to a microarray analysis. Among the 439 differentially expressed genes, strikingly 422 (96.1%) genes were downregulated and only a very small subset of 17 (3.9%) genes was upregulated. The results of these experiments further support the global downregulation in gene expression that we observed in the cortex of mice 2 weeks post-RPC. (PNG 492 kb)

High resolution image (TIF 2215 kb)

Supplementary Fig. 3

Immunofluorescence staining of the neuronal-astrocytic co-cultures at the long-term window post-RPC confirming cellular identity. Representative images showing the neuronal-astrocytic co-culture model stained with DAPI (blue), NeuN (red), MAP2 (magenta), and GFAP (green) at the 6-day time point post-RPC. (DAPI—4′,6-diamidino-2-phenylindole, GFAP—glial fibrillary acidic protein, NeuN—neuronal nuclei, MAP2—microtubule associated protein 2). (PNG 840 kb)

High resolution image (TIF 6056 kb)

Supplementary Fig. 4

Immunofluorescence staining of the neuronal-astrocytic co-cultures at the long-term window post-RPC confirming neuronal abundance. a Representative images showing the neuronal-astrocytic co-culture model stained with DAPI (blue) and NeuN (magenta) after 6 days from Res or Veh treatment. b Bar graph showing the percentage of neuron relative to DAPI based on the immunostaining results (n = 2; one-way ANOVA; ns, not significant). (PNG 1126 kb)

High resolution image (TIF 5187 kb)

Supplementary Table 1

The list of genes identified from the RNA-seq analysis 2 weeks post-RPC (XLSX 1856 kb)

Supplementary Table 2

The list of genes identified from the microarray analysis conducted on the neocortex from Barger et al. 2008 (XLSX 2357 kb)

Supplementary Table 3

The list of genes identified from the microarray analysis conducted on the hippocampus from Thomas et al. 2013 (XLSX 19 kb)

Supplementary Table 4

The list and sequence of primers used in the real-time PCR experiments (XLSX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khoury, N., Xu, J., Stegelmann, S.D. et al. Resveratrol Preconditioning Induces Genomic and Metabolic Adaptations within the Long-Term Window of Cerebral Ischemic Tolerance Leading to Bioenergetic Efficiency. Mol Neurobiol 56, 4549–4565 (2019). https://doi.org/10.1007/s12035-018-1380-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-1380-6

Keywords

Navigation