Skip to main content

Advertisement

Log in

Alternative Splicing of the Delta-Opioid Receptor Gene Suggests Existence of New Functional Isoforms

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The delta-opioid receptor (DOPr) participates in mediating the effects of opioid analgesics. However, no selective agonists have entered clinical care despite potential to ameliorate many neurological and psychiatric disorders. In an effort to address the drug development challenges, the functional contribution of receptor isoforms created by alternative splicing of the three-exonic coding gene, OPRD1, has been overlooked. We report that the gene is transcriptionally more diverse than previously demonstrated, producing novel protein isoforms in humans and mice. We provide support for the functional relevance of splice variants through context-dependent expression profiling (tissues, disease model) and conservation of the transcriptional landscape in closely related vertebrates. The conserved alternative transcriptional events have two distinct patterns. First, cassette exon inclusions between exons 1 and 2 interrupt the reading frame, producing truncated receptor fragments comprising only the first transmembrane (TM) domain, despite the lack of exact exon orthologues between distant species. Second, a novel promoter and transcriptional start site upstream of exon 2 produces a transcript of an N-terminally truncated 6TM isoform. However, a fundamental difference in the exonic landscaping as well as translation and translation products poses limits for modelling the human DOPr receptor system in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gendron L, Mittal N, Beaudry H, Walwyn W (2015) Recent advances on the delta opioid receptor: from trafficking to function. Br J Pharmacol 172:403–419. https://doi.org/10.1111/bph.12706

    Article  CAS  PubMed  Google Scholar 

  2. Pradhan AA, Smith ML, Zyuzin J, Charles A (2014) Delta-opioid receptor agonists inhibit migraine-related hyperalgesia, aversive state and cortical spreading depression in mice. Br J Pharmacol 171:2375–2384. https://doi.org/10.1111/bph.12591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Charles A, Pradhan AA (2016) Delta-opioid receptors as targets for migraine therapy. Curr Opin Neurol 29:314–319. https://doi.org/10.1097/WCO.0000000000000311

    Article  CAS  PubMed  Google Scholar 

  4. Vanderah TW (2010) Delta and kappa opioid receptors as suitable drug targets for pain. Clin J Pain 26(Suppl 10):S10–S15. https://doi.org/10.1097/AJP.0b013e3181c49e3a

    Article  PubMed  Google Scholar 

  5. Pradhan AA, Befort K, Nozaki C, Gaveriaux-Ruff C, Kieffer BL (2011) The delta opioid receptor: an evolving target for the treatment of brain disorders. Trends Pharmacol Sci 32:581–590. https://doi.org/10.1016/j.tips.2011.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gendron L, Cahill CM, von Zastrow M, Schiller PW, Pineyro G (2016) Molecular pharmacology of delta-opioid receptors. Pharmacol Rev 68:631–700. https://doi.org/10.1124/pr.114.008979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Petaja-Repo UE, Hogue M, Laperriere A, Walker P, Bouvier M (2000) Export from the endoplasmic reticulum represents the limiting step in the maturation and cell surface expression of the human delta opioid receptor. J Biol Chem 275:13727–13736. https://doi.org/10.1074/jbc.275.18.13727

    Article  CAS  PubMed  Google Scholar 

  8. Petaja-Repo UE, Hogue M, Leskela TT, Markkanen PM, Tuusa JT, Bouvier M (2006) Distinct subcellular localization for constitutive and agonist-modulated palmitoylation of the human delta opioid receptor. J Biol Chem 281:15780–15789. https://doi.org/10.1074/jbc.M602267200

    Article  CAS  PubMed  Google Scholar 

  9. Jiang Q, Takemori AE, Sultana M, Portoghese PS, Bowen WD, Mosberg HI, Porreca F (1991) Differential antagonism of opioid delta antinociception by [D-Ala2,Leu5,Cys6]enkephalin and naltrindole 5′-isothiocyanate: evidence for delta receptor subtypes. J Pharmacol Exp Ther 257:1069–1075

    CAS  PubMed  Google Scholar 

  10. Dietis N, Rowbotham DJ, Lambert DG (2011) Opioid receptor subtypes: fact or artifact? Br J Anaesth 107:8–18. https://doi.org/10.1093/bja/aer115

    Article  CAS  PubMed  Google Scholar 

  11. Pasternak GW, Pan YX (2013) Mu opioids and their receptors: evolution of a concept. Pharmacol Rev 65:1257–1317. https://doi.org/10.1124/pr.112.007138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Convertino M, Samoshkin A, Gauthier J, Gold MS, Maixner W, Dokholyan NV, Diatchenko L (2015) Mu-opioid receptor 6-transmembrane isoform: a potential therapeutic target for new effective opioids. Prog Neuro-Psychopharmacol Biol Psychiatry 62:61–67. https://doi.org/10.1016/j.pnpbp.2014.11.009

    Article  CAS  Google Scholar 

  13. Gaveriaux-Ruff C, Peluso J, Befort K, Simonin F, Zilliox C, Kieffer BL (1997) Detection of opioid receptor mRNA by RT-PCR reveals alternative splicing for the delta- and kappa-opioid receptors. Brain Res Mol Brain Res 48:298–304. https://doi.org/10.1016/S0169-328X(97)00109-5

    Article  CAS  PubMed  Google Scholar 

  14. Mayer P, Tischmeyer H, Jayasinghe M, Bonnekoh B, Gollnick H, Teschemacher H, Hollt V (2000) A delta opioid receptor lacking the third cytoplasmic loop is generated by atypical mRNA processing in human malignomas. FEBS Lett 480:156–160. https://doi.org/10.1016/S0304-3940(03)00382-3

    Article  CAS  PubMed  Google Scholar 

  15. Mayer P, Kroslak T, Tischmeyer H, Hollt V (2003) A truncated delta opioid receptor, spontaneously produced in human but not rat neuroblastoma cells, interferes with signaling of the full-length receptor. Neurosci Lett 344:62–64. https://doi.org/10.1016/S0014-5793(00)01929-3

    Article  CAS  PubMed  Google Scholar 

  16. Ogurtsov AY, Roytberg MA, Shabalina SA, Kondrashov AS (2002) OWEN: aligning long collinear regions of genomes. Bioinformatics 18:1703–1704

    Article  CAS  PubMed  Google Scholar 

  17. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. https://doi.org/10.1093/nar/gkh340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591. https://doi.org/10.1093/molbev/msm088

    Article  CAS  PubMed  Google Scholar 

  19. Michel AM, Fox G, Kiran A M, De Bo C, O’Connor PB, Heaphy SM, Mullan JP, Donohue CA et al (2014) GWIPS-viz: development of a ribo-seq genome browser. Nucleic Acids Res 42:D859–D864. https://doi.org/10.1093/nar/gkt1035

    Article  CAS  PubMed  Google Scholar 

  20. Maquat LE (2004) Nonsense-mediated mRNA decay: splicing, translation and mRNP dynamics. Nat Rev Mol Cell Biol 5:89–99. https://doi.org/10.1038/nrm1310

    Article  CAS  PubMed  Google Scholar 

  21. Choi HS, Kim CS, Hwang CK, Song KY, Wang W, Qiu Y, Law PY, Wei LN et al (2006) The opioid ligand binding of human mu-opioid receptor is modulated by novel splice variants of the receptor. Biochem Biophys Res Commun 343:1132–1140. https://doi.org/10.1016/j.bbrc.2006.03.084

    Article  CAS  PubMed  Google Scholar 

  22. Ingolia NT, Lareau LF, Weissman JS (2011) Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell 147:789–802. https://doi.org/10.1016/j.cell.2011.10.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dubot A, Godinot C, Dumur V, Sablonniere B, Stojkovic T, Cuisset JM, Vojtiskova A, Pecina P et al (2004) GUG is an efficient initiation codon to translate the human mitochondrial ATP6 gene. Biochem Biophys Res Commun 313:687–693. https://doi.org/10.1016/j.bbrc.2003.12.013

    Article  CAS  PubMed  Google Scholar 

  24. Sorek R (2007) The birth of new exons: mechanisms and evolutionary consequences. RNA 13:1603–1608. https://doi.org/10.1261/rna.682507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hsu PY, Calviello L, Wu HL, Li FW, Rothfels CJ, Ohler U, Benfey PN (2016) Super-resolution ribosome profiling reveals unannotated translation events in Arabidopsis. Proc Natl Acad Sci U S A 113:E7126–E7135. https://doi.org/10.1073/pnas.1614788113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Werner A, Iwasaki S, McGourty CA, Medina-Ruiz S, Teerikorpi N, Fedrigo I, Ingolia NT, Rape M (2015) Cell-fate determination by ubiquitin-dependent regulation of translation. Nature 525:523–527. https://doi.org/10.1038/nature14978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shabalina SA, Ogurtsov AY, Spiridonov NA, Koonin EV (2014) Evolution at protein ends: major contribution of alternative transcription initiation and termination to the transcriptome and proteome diversity in mammals. Nucleic Acids Res 42:7132–7144. https://doi.org/10.1093/nar/gku342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shabalina SA, Spiridonov AN, Spiridonov NA, Koonin EV (2010) Connections between alternative transcription and alternative splicing in mammals. Genome Biol Evol 2:791–799. https://doi.org/10.1093/gbe/evq058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yan Q, Weyn-Vanhentenryck SM, Wu J, Sloan SA, Zhang Y, Chen K, Wu JQ, Barres BA et al (2015) Systematic discovery of regulated and conserved alternative exons in the mammalian brain reveals NMD modulating chromatin regulators. Proc Natl Acad Sci U S A 112:3445–3450. https://doi.org/10.1073/pnas.1502849112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shabalina SA, Zaykin DV, Gris P, Ogurtsov AY, Gauthier J, Shibata K, Tchivileva IE, Belfer I et al (2009) Expansion of the human mu-opioid receptor gene architecture: novel functional variants. Hum Mol Genet 18:1037–1051. https://doi.org/10.1093/hmg/ddn439

    Article  CAS  PubMed  Google Scholar 

  31. Ogurtsov AY, Marino-Ramirez L, Johnson GR, Landsman D, Shabalina SA, Spiridonov NA (2008) Expression patterns of protein kinases correlate with gene architecture and evolutionary rates. PLoS One 3:e3599. https://doi.org/10.1371/journal.pone.0003599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shabalina SA, Ogurtsov AY, Spiridonov AN, Novichkov PS, Spiridonov NA, Koonin EV (2010) Distinct patterns of expression and evolution of intronless and intron-containing mammalian genes. Mol Biol Evol 27:1745–1749. https://doi.org/10.1093/molbev/msq086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Slavoff SA, Mitchell AJ, Schwaid AG, Cabili MN, Ma J, Levin JZ, Karger AD, Budnik BA et al (2013) Peptidomic discovery of short open reading frame-encoded peptides in human cells. Nat Chem Biol 9:59–64. https://doi.org/10.1038/nchembio.1120

    Article  CAS  PubMed  Google Scholar 

  34. D'Lima NG, Ma J, Winkler L, Chu Q, Loh KH, Corpuz EO, Budnik BA, Lykke-Andersen J et al (2017) A human microprotein that interacts with the mRNA decapping complex. Nat Chem Biol 13:174–180. https://doi.org/10.1038/nchembio.2249

    Article  CAS  PubMed  Google Scholar 

  35. Aebersold R, Agar JN, Amster IJ, Baker MS, Bertozzi CR, Boja ES, Costello CE, Cravatt BF et al (2018) How many human proteoforms are there? Nat Chem Biol 14:206–214. https://doi.org/10.1038/nchembio.2576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Starck SR, Ow Y, Jiang V, Tokuyama M, Rivera M, Qi X, Roberts RW, Shastri N (2008) A distinct translation initiation mechanism generates cryptic peptides for immune surveillance. PLoS One 3:e3460. https://doi.org/10.1371/journal.pone.0003460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Starck SR, Jiang V, Pavon-Eternod M, Prasad S, McCarthy B, Pan T, Shastri N (2012) Leucine-tRNA initiates at CUG start codons for protein synthesis and presentation by MHC class I. Science 336:1719–1723. https://doi.org/10.1126/science.1220270

    Article  CAS  PubMed  Google Scholar 

  38. Gerashchenko MV, Su D, Gladyshev VN (2010) CUG start codon generates thioredoxin/glutathione reductase isoforms in mouse testes. J Biol Chem 285:4595–4602. https://doi.org/10.1074/jbc.M109.070532

    Article  CAS  PubMed  Google Scholar 

  39. Studtmann K, Olschlager-Schutt J, Buck F, Richter D, Sala C, Bockmann J, Kindler S, Kreienkamp HJ (2014) A non-canonical initiation site is required for efficient translation of the dendritically localized Shank1 mRNA. PLoS One 9:e88518. https://doi.org/10.1371/journal.pone.0088518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nilsen TW, Graveley BR (2010) Expansion of the eukaryotic proteome by alternative splicing. Nature 463:457–463. https://doi.org/10.1038/nature08909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yeo G, Holste D, Kreiman G, Burge CB (2004) Variation in alternative splicing across human tissues. Genome Biol 5:R74. https://doi.org/10.1186/gb-2004-5-10-r74

    Article  PubMed  PubMed Central  Google Scholar 

  42. Xu J, Xu M, Brown T, Rossi GC, Hurd YL, Inturrisi CE, Pasternak GW, Pan YX (2013) Stabilization of the mu-opioid receptor by truncated single transmembrane splice variants through a chaperone-like action. J Biol Chem 288:21211–21227. https://doi.org/10.1074/jbc.M113.458687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Samoshkin A, Convertino M, Viet CT, Wieskopf JS, Kambur O, Marcovitz J, Patel P, Stone LS et al (2015) Structural and functional interactions between six-transmembrane mu-opioid receptors and beta2-adrenoreceptors modulate opioid signaling. Sci Rep 5:18198. https://doi.org/10.1038/srep18198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Majumdar S, Grinnell S, Le Rouzic V, Burgman M, Polikar L, Ansonoff M, Pintar J, Pan YX et al (2011) Truncated G protein-coupled mu opioid receptor MOR-1 splice variants are targets for highly potent opioid analgesics lacking side effects. Proc Natl Acad Sci U S A 108:19778–19783. https://doi.org/10.1073/pnas.1115231108

    Article  PubMed  PubMed Central  Google Scholar 

  45. Luco RF, Allo M, Schor IE, Kornblihtt AR, Misteli T (2011) Epigenetics in alternative pre-mRNA splicing. Cell 144:16–26. https://doi.org/10.1016/j.cell.2010.11.056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhou HL, Luo G, Wise JA, Lou H (2014) Regulation of alternative splicing by local histone modifications: potential roles for RNA-guided mechanisms. Nucleic Acids Res 42:701–713. https://doi.org/10.1093/nar/gkt875

    Article  CAS  PubMed  Google Scholar 

  47. Decosterd I, Woolf CJ (2000) Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain 87:149–158. https://doi.org/10.1016/S0304-3959(00)00276-1

    Article  CAS  PubMed  Google Scholar 

  48. Massart R, Dymov S, Millecamps M, Suderman M, Gregoire S, Koenigs K, Alvarado S, Tajerian M et al (2016) Overlapping signatures of chronic pain in the DNA methylation landscape of prefrontal cortex and peripheral T cells. Sci Rep 6:19615. https://doi.org/10.1038/srep19615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Morinville A, Cahill CM, Esdaile MJ, Aibak H, Collier B, Kieffer BL, Beaudet A (2003) Regulation of delta-opioid receptor trafficking via mu-opioid receptor stimulation: evidence from mu-opioid receptor knock-out mice. J Neurosci 23:4888–4898. https://doi.org/10.1523/JNEUROSCI.23-12-04888.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Morinville A, Cahill CM, Aibak H, Rymar VV, Pradhan A, Hoffert C, Mennicken F, Stroh T et al (2004) Morphine-induced changes in delta opioid receptor trafficking are linked to somatosensory processing in the rat spinal cord. J Neurosci 24:5549–5559. https://doi.org/10.1523/JNEUROSCI.2719-03.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pan YX, Xu J, Mahurter L, Bolan E, Xu M, Pasternak GW (2001) Generation of the mu opioid receptor (MOR-1) protein by three new splice variants of the Oprm gene. Proc Natl Acad Sci U S A 98:14084–14089. https://doi.org/10.1073/pnas.241296098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gris P, Gauthier J, Cheng P, Gibson DG, Gris D, Laur O, Pierson J, Wentworth S et al (2010) A novel alternatively spliced isoform of the mu-opioid receptor: functional antagonism. Mol Pain 6:33. https://doi.org/10.1186/1744-8069-6-33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Convertino M, Samoshkin A, Viet CT, Gauthier J, Li Fraine SP, Sharif-Naeini R, Schmidt BL, Maixner W et al (2015) Differential regulation of 6- and 7-transmembrane helix variants of mu-opioid receptor in response to morphine stimulation. PLoS One 10:e0142826. https://doi.org/10.1371/journal.pone.0142826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Marrone GF, Le Rouzic V, Varadi A, Xu J, Rajadhyaksha AM, Majumdar S, Pan YX, Pasternak GW (2017) Genetic dissociation of morphine analgesia from hyperalgesia in mice. Psychopharmacology 234:1891–1900. https://doi.org/10.1007/s00213-017-4600-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Oladosu FA, Conrad MS, O'Buckley SC, Rashid NU, Slade GD, Nackley AG (2015) Mu opioid splice variant MOR-1K contributes to the development of opioid-induced hyperalgesia. PLoS One 10:e0135711. https://doi.org/10.1371/journal.pone.0135711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mennicken F, Zhang J, Hoffert C, Ahmad S, Beaudet A, O'Donnell D (2003) Phylogenetic changes in the expression of delta opioid receptors in spinal cord and dorsal root ganglia. J Comp Neurol 465:349–360. https://doi.org/10.1002/cne.10839

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to Anna K. Naumova for her helpful comments and ideas. Cellecta Inc. is gratefully acknowledged for PCR on OPRD1 transcripts in human tissues.

Funding

This work was supported by The Canadian Institutes of Health Research (G237818/CERC09/CIHR to L.D.) and by the Intramural funds of the US Department of Health and Human Services to the National Library of Medicine (to S.A.S).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luda Diatchenko.

Ethics declarations

Experimental procedures were approved by the Animal Care Committee at McGill University and conformed to the ethical guidelines of the Canadian Council of Animal Care and the guidelines of the Committee for Research and Ethical Issues of the International Association for the Study of Pain.

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

ESM 1

(PDF 1205 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piltonen, M., Parisien, M., Grégoire, S. et al. Alternative Splicing of the Delta-Opioid Receptor Gene Suggests Existence of New Functional Isoforms. Mol Neurobiol 56, 2855–2869 (2019). https://doi.org/10.1007/s12035-018-1253-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-1253-z

Keywords

Navigation