Skip to main content

Advertisement

Log in

Thioredoxin-Interacting Protein (TXNIP) in Cerebrovascular and Neurodegenerative Diseases: Regulation and Implication

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Neurological diseases, including acute attacks (e.g., ischemic stroke) and chronic neurodegenerative diseases (e.g., Alzheimer’s disease), have always been one of the leading cause of morbidity and mortality worldwide. These debilitating diseases represent an enormous disease burden, not only in terms of health suffering but also in economic costs. Although the clinical presentations differ for these diseases, a growing body of evidence suggests that oxidative stress and inflammatory responses in brain tissue significantly contribute to their pathology. However, therapies attempting to prevent oxidative damage or inhibiting inflammation have shown little success. Identification and targeting endogenous “upstream” mediators that normalize such processes will lead to improve therapeutic strategy of these diseases. Thioredoxin-interacting protein (TXNIP) is an endogenous inhibitor of the thioredoxin (TRX) system, a major cellular thiol-reducing and antioxidant system. TXNIP regulating redox/glucose-induced stress and inflammation, now is known to get upregulated in stroke and other brain diseases, and represents a promising therapeutic target. In particular, there is growing evidence that glucose strongly induces TXNIP in multiple cell types, suggesting possible physiological roles of TXNIP in glucose metabolism. Recently, a significant body of literature has supported an essential role of TXNIP in the activation of the NOD-like receptor protein (NLRP3)-inflammasome, a well-established multi-molecular protein complex and a pivotal mediator of sterile inflammation. Accordingly, TXNIP has been postulated to reside centrally in detecting cellular damage and mediating inflammatory responses to tissue injury. The majority of recent studies have shown that pharmacological inhibition or genetic deletion of TXNIP is neuroprotective and able to reduce detrimental aspects of pathology following cerebrovascular and neurodegenerative diseases. Conspicuously, the mainstream of the emerging evidences is highlighting TXNIP link to damaging signals in endothelial cells. Thereby, here, we keep the trend to present the accumulative data on CNS diseases dealing with vascular integrity. This review aims to summarize evidence supporting the significant contribution of regulatory mechanisms of TXNIP with the development of brain diseases, explore pharmacological strategies of targeting TXNIP, and outline obstacles to be considered for efficient clinical translation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

AIM2:

Absence in melanoma

AMPK:

AMP-activated protein kinase

ASC:

Apoptosis-associated speck-like

ASK-1:

Apoptosis signal-regulating kinase

BBB:

Blood-brain barrier

Cyt-c:

Cytochrome C

ChREBP:

Carbohydrate response element-binding protein

DAMP:

Damage-associated molecular patterns

DSS:

Disturbed shear stress

ECs:

Endothelial cells

ER:

Endoplasmic reticulum

eMCAO:

Embolic MCAO

FOXO:

Forkhead box transcription factor, class O

GFAP:

Glial fibrillary acidic protein

GLUT:

Glucose transporter

HFD:

High-fat diet

HGD:

High-glucose diet

HUVECs:

Human umbilical vein endothelial cells

HRE:

Human retinal endothelial cells

ICH:

Intracerebral hemorrhage

IL-1β:

Interleukin-1-beta

IRE1α:

Serine/threonine-protein kinase/endoribonuclease

JNK:

c-Jun-N-terminal kinase

KO:

Knockout

KLF-2:

Kruppel-like factor 2

LPS:

Lipopolysaccharide

LRR:

Leucine-rich repeat domain

MAP:

Mitogen-activated protein

MCAO:

Middle cerebral artery occlusion

MI:

Myocardial infarction

MAPK:

Mitogen-activated protein kinase

miRNA:

Microribonucleic acid

MMP-9:

Matrix metalloproteinase 9

MyD-88:

Myeloid differentiation primary response 88

NADPH:

Nicotinamide adenine dinucleotide phosphate-oxidase

NAD:

Nicotinamide adenine dinucleotide phosphate

NADH:

Nicotinamide adenine dinucleotide phosphate

NBD:

Nucleotide-binding domain

NF-κB:

Nuclear factor kappa-B

NLR:

Nucleotide-binding oligomerization domain-like receptor

NLRP:

NOD-like receptor proteins

NMDA:

N-Methyl-D-aspartate

NOD:

Nucleotide-binding oligomerization domain

NOX:

Nicotinamide adenine dinucleotide phosphate oxidase

OGD:

Oxygen glucose deprivation

PAMP:

Pathogen-associated molecular patterns

PERK:

Protein kinase R-like ER kinase

PRR:

Pattern recognition receptor

PTP:

Phospho-tyrosine phosphatases

pVHL:

von Hippel–Lindau protein

RAGE:

Advanced glycation end-products

stz:

Streptozotocin

SAH:

Subarachnoid hemorrhage

SUR1:

Sulfonylurea receptor 1

TLR:

Toll-like receptor

tMCAO:

Transient MCAO

TNF-α:

Tumor necrotizing factor-α

TRX:

Thioredoxin

TXNIP:

Thioredoxin-interacting protein

UPR:

Unfolded protein response

VDUP1:

Vitamin D3 upregulated protein 1

VCAM:

Vascular cell adhesion protein

VEGF:

Vascular endothelial growth factor

WT:

Wild type

ZDF:

Zucker diabetic fatty

References

  1. Global Burden of Disease Study C (2015) Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 386:743–800

    Google Scholar 

  2. Kowal SL, Dall TM, Chakrabarti R et al (2013) The current and projected economic burden of Parkinson’s disease in the United States. Mov Disord 28:311–318

    Article  PubMed  Google Scholar 

  3. Murray CJ, Atkinson C, Bhalla K et al (2013) The state of US health, 1990-2010: burden of diseases, injuries, and risk factors. JAMA 310:591–608

    Article  PubMed  CAS  Google Scholar 

  4. Bennett DA, Krishnamurthi RV, Barker-Collo S et al (2014) The global burden of ischemic stroke: findings of the GBD 2010 study. Glob Heart 9:107–112

    Article  PubMed  Google Scholar 

  5. Rubiano AM, Carney N, Chesnut R et al (2015) Global neurotrauma research challenges and opportunities. Nature 527:S193–S197

    Article  PubMed  CAS  Google Scholar 

  6. Fischer R, Maier O (2015) Interrelation of oxidative stress and inflammation in neurodegenerative disease: role of TNF. Oxidative Med Cell Longev 2015

  7. Kim GH, Kim JE, Rhie SJ et al (2015) The role of oxidative stress in neurodegenerative diseases. Exp Neurobiol 24:325–340

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chamorro Á, Dirnagl U, Urra X et al (2016) Neuroprotection in acute stroke: targeting excitotoxicity, oxidative and nitrosative stress, and inflammation. Lancet Neurol 15:869–881

    Article  PubMed  CAS  Google Scholar 

  9. Witte ME, Geurts JJ, de Vries HE et al (2010) Mitochondrial dysfunction: a potential link between neuroinflammation and neurodegeneration? Mitochondrion 10:411–418

    Article  PubMed  CAS  Google Scholar 

  10. Chan PH (2005) Mitochondrial dysfunction and oxidative stress as determinants of cell death/survival in stroke. Ann N Y Acad Sci 1042:203–209

    Article  PubMed  CAS  Google Scholar 

  11. Rothwell PM, Howard SC, Dolan E et al (2010) Effects of β blockers and calcium-channel blockers on within-individual variability in blood pressure and risk of stroke. Lancet Neurol 9:469–480

    Article  PubMed  CAS  Google Scholar 

  12. Girouard H, Iadecola C (2006) Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease. J Appl Physiol 100:328–335

    Article  PubMed  CAS  Google Scholar 

  13. Heppner FL, Ransohoff RM, Becher B (2015) Immune attack: the role of inflammation in Alzheimer disease. Nat Rev Neurosci 16:358

    Article  PubMed  CAS  Google Scholar 

  14. Grotta JC, Albers GW, Broderick JP, et al (2015) Stroke: pathophysiology, diagnosis, and management. Elsevier Health Sciences.

  15. Kristián T, Siesjö BK (1998) Calcium in ischemic cell death. Stroke 29:705–718

    Article  PubMed  Google Scholar 

  16. Chan PH (1996) Role of oxidants in ischemic brain damage. Stroke 27:1124–1129

    Article  PubMed  CAS  Google Scholar 

  17. Xia W, Han J, Huang G et al (2010) Inflammation in ischaemic brain injury: current advances and future perspectives. Clin Exp Pharmacol Physiol 37:253–258

    Article  PubMed  CAS  Google Scholar 

  18. Clarke D (1999) Circulation and energy metabolism of the brain. Basic Neurochem : Mol Cell Med Asp:637–669

  19. Gerlach M, Ben-Shachar D, Riederer P et al (1994) Altered brain metabolism of iron as a cause of neurodegenerative diseases? J Neurochem 63:793–807

    Article  PubMed  CAS  Google Scholar 

  20. Cooper AJ, Meister A (1997) Glutathione in the brain: disorders of glutathione metabolism. Mol Genet Basis Neurol Dis 35

  21. Drechsel DA, Patel M (2010) Respiration-dependent H2O2 removal in brain mitochondria via the thioredoxin/peroxiredoxin system. J Biol Chem 285:27850–27858

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Bereczki D and Fekete I (2008) Vinpocetine for acute ischaemic stroke. The Cochrane Library.

  23. Geeganage C, Beavan J, Ellender S, et al (2012) Interventions for dysphagia and nutritional support in acute and subacute stroke. The Cochrane Library.

  24. Farina N, Isaac M, Clark AR, et al (2012) Vitamin E for Alzheimer’s dementia and mild cognitive impairment. Cochrane Database Syst Rev 11.

  25. Evans JR and Henshaw K (2008) Antioxidant vitamin and mineral supplements for preventing age-related macular degeneration Cochrane Database Syst Rev CD000253

  26. Holmgren A, Johansson C, Berndt C, et al (2005) Thiol redox control via thioredoxin and glutaredoxin systems. Portland Press Limited

  27. Schulze PC, De Keulenaer GW, Yoshioka J et al (2002) Vitamin D3-upregulated protein-1 (VDUP-1) regulates redox-dependent vascular smooth muscle cell proliferation through interaction with thioredoxin. Circ Res 91:689–695

    Article  PubMed  CAS  Google Scholar 

  28. Chen K-S, DeLuca HF (1994) Isolation and characterization of a novel cDNA from HL-60 cells treated with 1, 25-dihydroxyvitamin D-3. Biochim Biophys Acta (BBA) Gene Struct Expr 1219:26–32

    Article  CAS  Google Scholar 

  29. Li X, Rong Y, Zhang M et al (2009) Up-regulation of thioredoxin interacting protein (Txnip) by p38 MAPK and FOXO1 contributes to the impaired thioredoxin activity and increased ROS in glucose-treated endothelial cells. Biochem Biophys Res Commun 381:660–665

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Morrison JA, Pike LA, Sams SB et al (2014) Thioredoxin interacting protein (TXNIP) is a novel tumor suppressor in thyroid cancer. Mol Cancer 13:62

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Singh LP (2013) Thioredoxin interacting protein (TXNIP) and pathogenesis of diabetic retinopathy. J Clin Exp Ophthalmol 4

  32. Shalev A (2008) Lack of TXNIP protects β-cells against glucotoxicity. Portland Press Limited

  33. Parikh H, Carlsson E, Chutkow WA et al (2007) TXNIP regulates peripheral glucose metabolism in humans. PLoS Med 4:e158

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Wang Z, Rong Y, Malone M et al (2006) Thioredoxin-interacting protein (txnip) is a glucocorticoid-regulated primary response gene involved in mediating glucocorticoid-induced apoptosis. Oncogene 25:1903–1913

    Article  PubMed  CAS  Google Scholar 

  35. Bellamy CO, Malcolmson RD, Harrison DJ, et al. (1995) Cell death in health and disease: the biology and regulation of apoptosis. In Seminars in cancer biology. Elsevier

  36. Zhou J, Chng W-J (2013) Roles of thioredoxin binding protein (TXNIP) in oxidative stress, apoptosis and cancer. Mitochondrion 13:163–169

    Article  PubMed  CAS  Google Scholar 

  37. Abais JM, Xia M, Zhang Y et al (2015) Redox regulation of NLRP3 inflammasomes: ROS as trigger or effector? Antioxid Redox Signal 22:1111–1129

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Yoshihara E, Masaki S, Matsuo Y et al (2014) Thioredoxin/Txnip: redoxisome, as a redox switch for the pathogenesis of diseases. Front Immunol 4:514

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Nordlund P, Reichard P (2006) Ribonucleotide reductases. Annu Rev Biochem 75:681–706

    Article  PubMed  CAS  Google Scholar 

  40. Luthman M, Holmgren A (1982) Rat liver thioredoxin and thioredoxin reductase: purification and characterization. Biochemistry 21:6628–6633

    Article  PubMed  CAS  Google Scholar 

  41. Sabens EA and Mieyal JJ (2009) Glutaredoxin and thioredoxin enzyme systems: catalytic mechanisms and physiological functions. Glutathione and sulfur amino acids in human health and disease, edited by Masella R and Massa G. Hoboken, NJ: John Wiley & Sons, Inc 121-156.

  42. Lippoldt A, Padilla C, Gerst H et al (1995) Localization of thioredoxin in the rat brain and functional implications. J Neurosci 15:6747–6756

    Article  PubMed  CAS  Google Scholar 

  43. Rybnikova E, Damdimopoulos AE, Gustafsson JÅ et al (2000) Expression of novel antioxidant thioredoxin-2 in the rat brain. Eur J Neurosci 12:1669–1678

    Article  PubMed  CAS  Google Scholar 

  44. Yoshihara E, Masaki S, Matsuo Y et al (2013) Thioredoxin/Txnip: redoxisome, as a redox switch for the pathogenesis of diseases. Front Immunol 4

  45. Takagi Y, Mitsui A, Nishiyama A et al (1999) Overexpression of thioredoxin in transgenic mice attenuates focal ischemic brain damage. Proc Natl Acad Sci 96:4131–4136

    Article  PubMed  CAS  Google Scholar 

  46. Hattori I, Takagi Y, Nakamura H et al (2004) Intravenous administration of thioredoxin decreases brain damage following transient focal cerebral ischemia in mice. Antioxid Redox Signal 6:81–87

    Article  PubMed  CAS  Google Scholar 

  47. Mitsui A, Hamuro J, Nakamura H et al (2002) Overexpression of human thioredoxin in transgenic mice controls oxidative stress and life span. Antioxid Redox Signal 4:693–696

    Article  PubMed  CAS  Google Scholar 

  48. Tanaka T, Hosoi F, Yamaguchi-Iwai Y et al (2002) Thioredoxin-2 (TRX-2) is an essential gene regulating mitochondria-dependent apoptosis. EMBO J 21:1695–1703

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Wang D, Masutani H, S-i O et al (2006) Control of mitochondrial outer membrane permeabilization and Bcl-xL levels by thioredoxin 2 in DT40 cells. J Biol Chem 281:7384–7391

    Article  PubMed  CAS  Google Scholar 

  50. Chen Y, Cai J, Murphy T et al (2002) Overexpressed human mitochondrial thioredoxin confers resistance to oxidant-induced apoptosis in human osteosarcoma cells. J Biol Chem 277:33242–33248

    Article  PubMed  CAS  Google Scholar 

  51. Matthews JR, Wakasugi N, Virelizier J-L et al (1992) Thiordoxin regulates the DNA binding activity of NF-χB by reduction of a disulphid bond involving cysteine 62. Nucleic Acids Res 20:3821–3830

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Okamoto T, Ogiwara H, Hayashi T et al (1992) Human thioredoxin/adult T cell leukemia-derived factor activates the enhancer binding protein of human immunodeficiency virus type 1 by thiol redox control mechanism. Int Immunol 4:811–819

    Article  PubMed  CAS  Google Scholar 

  53. Welsh SJ, Bellamy WT, Briehl MM et al (2002) The redox protein thioredoxin-1 (Trx-1) increases hypoxia-inducible factor 1α protein expression. Cancer Res 62:5089–5095

    PubMed  CAS  Google Scholar 

  54. Baker AF, Dragovich T, Tate WR et al (2006) The antitumor thioredoxin-1 inhibitor PX-12 (1-methylpropyl 2-imidazolyl disulfide) decreases thioredoxin-1 and VEGF levels in cancer patient plasma. J Lab Clin Med 147:83–90

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Bodnar JS, Chatterjee A, Castellani LW et al (2002) Positional cloning of the combined hyperlipidemia gene Hyplip1. Nat Genet 30:110

    Article  PubMed  CAS  Google Scholar 

  56. Levendusky MC, Basle J, Chang S et al (2009) Expression and regulation of vitamin D3 upregulated protein 1 (VDUP1) is conserved in mammalian and insect brain. J Comp Neurol 517:581–600

    Article  PubMed  CAS  Google Scholar 

  57. Xu G, Chen J, Jing G et al (2013) Thioredoxin-interacting protein regulates insulin transcription through microRNA-204. Nat Med 19:1141–1146

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Elbein SC, Hoffman MD, Teng K et al (1999) A genome-wide search for type 2 diabetes susceptibility genes in Utah Caucasians. Diabetes 48:1175–1182

    Article  PubMed  CAS  Google Scholar 

  59. Vionnet N, Dupont S, Gallina S et al (2000) Genomewide search for type 2 diabetes–susceptibility genes in French Whites: evidence for a novel susceptibility locus for early-onset diabetes on chromosome 3q27-qter and independent replication of a type 2–diabetes locus on chromosome 1q21–q24. Am J Hum Genet 67:1470–1480

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Junn E, Han SH, Im JY et al (2000) Vitamin D3 up-regulated protein 1 mediates oxidative stress via suppressing the thioredoxin function. J Immunol 164:6287–6295

    Article  PubMed  CAS  Google Scholar 

  61. Kim GS, Jung JE, Narasimhan P et al (2012) Induction of thioredoxin-interacting protein is mediated by oxidative stress, calcium, and glucose after brain injury in mice. Neurobiol Dis 46:440–449

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Saxena G, Chen J, Shalev A (2010) Intracellular shuttling and mitochondrial function of thioredoxin-interacting protein. J Biol Chem 285:3997–4005

    Article  PubMed  CAS  Google Scholar 

  63. Wu N, Zheng B, Shaywitz A et al (2013) AMPK-dependent degradation of TXNIP upon energy stress leads to enhanced glucose uptake via GLUT1. Mol Cell 49:1167–1175

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Spindel ON, Berk BC (2011) Thioredoxin-interacting protein mediates TRX1 translocation to the plasma membrane in response to tumor necrosis factor-α. Arterioscler Thromb Vasc Biol 31:1890–1897

    Article  PubMed  CAS  Google Scholar 

  65. K-y K, Shin SM, Kim JK et al (2004) Heat shock factor regulates VDUP1 gene expression. Biochem Biophys Res Commun 315:369–375

    Article  CAS  Google Scholar 

  66. Schulze PC, Yoshioka J, Takahashi T et al (2004) Hyperglycemia promotes oxidative stress through inhibition of thioredoxin function by thioredoxin-interacting protein. J Biol Chem 279:30369–30374

    Article  PubMed  CAS  Google Scholar 

  67. Wang Y, De Keulenaer GW, Lee RT (2002) Vitamin D3-up-regulated protein-1 is a stress-responsive gene that regulates cardiomyocyte viability through interaction with thioredoxin. J Biol Chem 277:26496–26500

    Article  PubMed  CAS  Google Scholar 

  68. Saitoh M, Nishitoh H, Fujii M et al (1998) Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J 17:2596–2606

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Chen J, Fontes G, Saxena G et al (2010) Lack of TXNIP protects against mitochondria-mediated apoptosis but not against fatty acid–induced ER stress–mediated β-cell death. Diabetes 59:440–447

    Article  PubMed  CAS  Google Scholar 

  70. Ishrat T, Mohamed IN, Pillai B et al (2015) Thioredoxin-interacting protein: a novel target for neuroprotection in experimental thromboembolic stroke in mice. Mol Neurobiol 51:766–778

    Article  PubMed  CAS  Google Scholar 

  71. Zhao Q, Che X, Zhang H et al (2017) Thioredoxin-interacting protein mediates apoptosis in early brain injury after subarachnoid haemorrhage. Int J Mol Sci 18:854

    Article  PubMed Central  Google Scholar 

  72. Ye X, Zuo D, Yu L et al (2017) ROS/TXNIP pathway contributes to thrombin induced NLRP3 inflammasome activation and cell apoptosis in microglia. Biochem Biophys Res Commun 485:499–505

    Article  PubMed  CAS  Google Scholar 

  73. Wu J, Xu X, Li Y et al (2014) Quercetin, luteolin and epigallocatechin gallate alleviate TXNIP and NLRP3-mediated inflammation and apoptosis with regulation of AMPK in endothelial cells. Eur J Pharmacol 745:59–68

    Article  PubMed  CAS  Google Scholar 

  74. Devi TS, Hosoya K-I, Terasaki T et al (2013) Critical role of TXNIP in oxidative stress, DNA damage and retinal pericyte apoptosis under high glucose: implications for diabetic retinopathy. Exp Cell Res 319:1001–1012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Wei M, Jiao D, Han D et al (2017) Knockdown of RNF2 induces cell cycle arrest and apoptosis in prostate cancer cells through the upregulation of TXNIP. Oncotarget 8:5323

    PubMed  Google Scholar 

  76. Li J, Yue Z, Xiong W et al (2017) TXNIP overexpression suppresses proliferation and induces apoptosis in SMMC7221 cells through ROS generation and MAPK pathway activation. Oncol Rep 37:3369–3376

    Article  PubMed  CAS  Google Scholar 

  77. Zhou J, Bi C, Cheong L-L et al (2011) The histone methyltransferase inhibitor, DZNep, up-regulates TXNIP, increases ROS production, and targets leukemia cells in AML. Blood 118:2830–2839

    Article  PubMed  Google Scholar 

  78. Zhang H, Gao P, Fukuda R et al (2007) HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity. Cancer Cell 11:407–420

    Article  PubMed  CAS  Google Scholar 

  79. Goda N, Kanai M (2012) Hypoxia-inducible factors and their roles in energy metabolism. Int J Hematol 95:457–463

    Article  PubMed  CAS  Google Scholar 

  80. Kelly DP (2008) Hypoxic reprogramming. Nat Genet 40:132–134

    Article  PubMed  CAS  Google Scholar 

  81. Shin D, Jeon J-H, Jeong M, et al (2008) VDUP1 mediates nuclear export of HIF1α via CRM1-dependent pathway. Biochimica et Biophysica Acta (BBA)-Molecular Cell Res 1783:838–848.

  82. Duncan JG, Fong JL, Medeiros DM et al (2007) Insulin-resistant heart exhibits a mitochondrial biogenic response driven by the peroxisome proliferator-activated receptor-α/PGC-1α gene regulatory pathway. Circulation 115:909–917

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Liu G-H, Qu J, Shen X (2006) Thioredoxin-mediated negative autoregulation of peroxisome proliferator-activated receptor α transcriptional activity. Mol Biol Cell 17:1822–1833

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Zarubin T, Jiahuai H (2005) Activation and signaling of the p38 MAP kinase pathway. Cell Res 15:11–18

    Article  PubMed  CAS  Google Scholar 

  85. Barger PM, Browning AC, Garner AN et al (2001) p38 mitogen-activated protein kinase activates peroxisome proliferator-activated receptor α a potential role in the cardiac metabolic stress response. J Biol Chem 276:44495–44501

    Article  PubMed  CAS  Google Scholar 

  86. Perrone L, Devi TS, Ki H et al (2009) Thioredoxin interacting protein (TXNIP) induces inflammation through chromatin modification in retinal capillary endothelial cells under diabetic conditions. J Cell Physiol 221:262–272

    Article  PubMed  CAS  Google Scholar 

  87. Wang X-Q, Nigro P, Fujiwara K et al (2012) Thioredoxin interacting protein promotes endothelial cell inflammation in response to disturbed flow by increasing leukocyte adhesion and repressing Kruppel-like factor 2Novelty and significance. Circ Res 110:560–568

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Ishrat T and Nasoohi S (2018) The NLRP3 inflammasome: a possible therapeutic target for treatment of stroke, in cellular and molecular approaches to regeneration and repair. Springer. p 427–480

  89. Gupta R, Ghosh S, Monks B et al (2014) RNA and β-hemolysin of group B Streptococcus induce interleukin-1β (IL-1β) by activating NLRP3 inflammasomes in mouse macrophages. J Biol Chem 289:13701–13705

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Costa A, Gupta R, Signorino G et al (2012) Activation of the NLRP3 inflammasome by group B streptococci. J Immunol 188:1953–1960

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Rathinam VA, Vanaja SK, Waggoner L et al (2012) TRIF licenses caspase-11-dependent NLRP3 inflammasome activation by gram-negative bacteria. Cell 150:606–619

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Allen IC, Scull MA, Moore CB et al (2009) The NLRP3 inflammasome mediates in vivo innate immunity to influenza A virus through recognition of viral RNA. Immunity 30:556–565

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Gonçalves VM, Matteucci KC, Buzzo CL et al (2013) NLRP3 controls Trypanosoma cruzi infection through a caspase-1-dependent IL-1R-independent NO production. PLoS Negl Trop Dis 7:e2469

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Duewell P, Kono H, Rayner KJ et al (2010) NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464:1357–1361

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Pazár B, Ea H-K, Narayan S et al (2011) Basic calcium phosphate crystals induce monocyte/macrophage IL-1β secretion through the NLRP3 inflammasome in vitro. J Immunol 186:2495–2502

    Article  PubMed  CAS  Google Scholar 

  96. Zhou R, Tardivel A, Thorens B et al (2010) Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol 11:136–140

    Article  PubMed  CAS  Google Scholar 

  97. Mohamed IN, Hafez SS, Fairaq A et al (2014) Thioredoxin-interacting protein is required for endothelial NLRP3 inflammasome activation and cell death in a rat model of high-fat diet. Diabetologia 57:413–423

    Article  PubMed  CAS  Google Scholar 

  98. Wang W, Wang C, Ding XQ et al (2013) Quercetin and allopurinol reduce liver thioredoxin-interacting protein to alleviate inflammation and lipid accumulation in diabetic rats. Br J Pharmacol 169:1352–1371

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Luo B, Li B, Wang W et al (2014) Rosuvastatin alleviates diabetic cardiomyopathy by inhibiting NLRP3 inflammasome and MAPK pathways in a type 2 diabetes rat model. Cardiovasc Drugs Ther 28:33–43

    Article  PubMed  CAS  Google Scholar 

  100. Chen W, Zhao M, Zhao S et al (2017) Activation of the TXNIP/NLRP3 inflammasome pathway contributes to inflammation in diabetic retinopathy: a novel inhibitory effect of minocycline. Inflamm Res 66:157–166

    Article  PubMed  CAS  Google Scholar 

  101. Gao P, He F-F, Tang H, et al (2015) NADPH oxidase-induced NALP3 inflammasome activation is driven by thioredoxin-interacting protein which contributes to podocyte injury in hyperglycemia. Journal of Diabetes Research 2015.

  102. Lv H, Liu Q, Wen Z et al (2017) Xanthohumol ameliorates lipopolysaccharide (LPS)-induced acute lung injury via induction of AMPK/GSK3β-Nrf2 signal axis. Redox Biol 12:311–324

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Yin Y, Zhou Z, Liu W et al (2017) Vascular endothelial cells senescence is associated with NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome activation via reactive oxygen species (ROS)/thioredoxin-interacting protein (TXNIP) pathway. Int J Biochem Cell Biol 84:22–34

    Article  PubMed  CAS  Google Scholar 

  104. Zhou R, Yazdi AS, Menu P et al (2011) A role for mitochondria in NLRP3 inflammasome activation. Nature 469:221–225

    Article  PubMed  CAS  Google Scholar 

  105. van Hooijdonk D (2013) Theoredoxin oxidation mediated by mitochondrial ROS is a key event in NLRP3 inflammasome activation

  106. Lunov O, Syrovets T, Loos C et al (2011) Amino-functionalized polystyrene nanoparticles activate the NLRP3 inflammasome in human macrophages. ACS Nano 5:9648–9657

    Article  PubMed  CAS  Google Scholar 

  107. Park YJ, Yoon SJ, Suh HW et al (2013) TXNIP deficiency exacerbates endotoxic shock via the induction of excessive nitric oxide synthesis. PLoS Pathog 9:e1003646

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Joshi S, Wang W, Peck AB et al (2015) Activation of the NLRP3 inflammasome in association with calcium oxalate crystal induced reactive oxygen species in kidneys. J Urol 193:1684–1691

    Article  PubMed  CAS  Google Scholar 

  109. Zhang X, Zhang J-H, Chen X-Y et al (2015) Reactive oxygen species-induced TXNIP drives fructose-mediated hepatic inflammation and lipid accumulation through NLRP3 inflammasome activation. Antioxid Redox Signal 22:848–870

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Liu W, Gu J, Qi J et al (2015) Lentinan exerts synergistic apoptotic effects with paclitaxel in A549 cells via activating ROS-TXNIP-NLRP3 inflammasome. J Cell Mol Med 19:1949–1955

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Minn AH, Hafele C, Shalev A (2005) Thioredoxin-interacting protein is stimulated by glucose through a carbohydrate response element and induces β-cell apoptosis. Endocrinology 146:2397–2405

    Article  PubMed  CAS  Google Scholar 

  112. Shalev A, Pise-Masison CA, Radonovich M et al (2002) Oligonucleotide microarray analysis of intact human pancreatic islets: identification of glucose-responsive genes and a highly regulated TGFβ signaling pathway. Endocrinology 143:3695–3698

    Article  PubMed  CAS  Google Scholar 

  113. Chen J, Cha-Molstad H, Szabo A et al (2009) Diabetes induces and calcium channel blockers prevent cardiac expression of proapoptotic thioredoxin-interacting protein. Am J Physiol Endocrinol Metab 296:E1133–E1139

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Soriano-Tárraga C, Jiménez-Conde J, Giralt-Steinhauer E et al (2015) Epigenome-wide association study identifies TXNIP gene associated with type 2 diabetes mellitus and sustained hyperglycemia. Hum Mol Genet 25:609–619

    Article  PubMed  CAS  Google Scholar 

  115. Reich E, Tamary A, Sionov RV et al (2012) Involvement of thioredoxin-interacting protein (TXNIP) in glucocorticoid-mediated beta cell death. Diabetologia 55:1048–1057

    Article  PubMed  CAS  Google Scholar 

  116. Shaked M, Ketzinel-Gilad M, Cerasi E et al (2011) AMP-activated protein kinase (AMPK) mediates nutrient regulation of thioredoxin-interacting protein (TXNIP) in pancreatic beta-cells. PLoS One 6:e28804

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Fang S, Jin Y, Zheng H et al (2011) High glucose condition upregulated Txnip expression level in rat mesangial cells through ROS/MEK/MAPK pathway. Mol Cell Biochem 347:175–182

    Article  PubMed  CAS  Google Scholar 

  118. Mubarak B, Soriano FX, Hardingham GE (2009) Synaptic NMDAR activity suppresses FOXO1 expression via a cis-acting FOXO binding site: FOXO1 is a FOXO target gene. Channels 3:233–239

    Article  Google Scholar 

  119. Brunet A, Bonni A, Zigmond MJ et al (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96:857–868

    Article  PubMed  CAS  Google Scholar 

  120. de Candia P, Blekhman R, Chabot AE et al (2008) A combination of genomic approaches reveals the role of FOXO1a in regulating an oxidative stress response pathway. PLoS One 3:e1670

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Kibbe C, Chen J, Xu G et al (2013) FOXO1 competes with carbohydrate response element-binding protein (ChREBP) and inhibits thioredoxin-interacting protein (TXNIP) transcription in pancreatic beta cells. J Biol Chem 288:23194–23202

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Xu G, Chen J, Jing G et al (2012) Preventing β-cell loss and diabetes with calcium channel blockers. Diabetes 61:848–856

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Cha-Molstad H, Xu G, Chen J et al (2012) Calcium channel blockers act through nuclear factor Y to control transcription of key cardiac genes. Mol Pharmacol 82:541–549

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Lerner AG, Upton J-P, Praveen P et al (2012) IRE1α induces thioredoxin-interacting protein to activate the NLRP3 inflammasome and promote programmed cell death under irremediable ER stress. Cell Metab 16:250–264

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Oslowski CM, Hara T, O'Sullivan-Murphy B et al (2012) Thioredoxin-interacting protein mediates ER stress-induced β cell death through initiation of the inflammasome. Cell Metab 16:265–273

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Perrone L, Devi T, Hosoya K et al (2010) Inhibition of TXNIP expression in vivo blocks early pathologies of diabetic retinopathy. Cell Death Dis 1:e65

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Yamawaki H, Pan S, Lee RT et al (2005) Fluid shear stress inhibits vascular inflammation by decreasing thioredoxin-interacting protein in endothelial cells. J Clin Investig 115:733

    Article  PubMed  CAS  Google Scholar 

  128. Gouget T, Djelloul M, Boucraut J et al (2011) TXNIP, the major player in insulin resistance, is early over-expressed in the brain of the 5XFAD Alzheimer's mice model and is induced by Aβ in vitro: emerging role of TXNIP and inflammation in Alzheimer’s disease progression. Alzheimers Dement : J Alzheimers Assoc 7:S684

    Article  Google Scholar 

  129. Gao J, He H, Jiang W et al (2015) Salidroside ameliorates cognitive impairment in a d-galactose-induced rat model of Alzheimer’s disease. Behav Brain Res 293:27–33

    Article  PubMed  CAS  Google Scholar 

  130. Kaya B, Erdi F, Kilinc I et al (2015) Alterations of the thioredoxin system during subarachnoid hemorrhage-induced cerebral vasospasm. Acta Neurochir 157:793

    Article  PubMed  CAS  Google Scholar 

  131. Erdi F, Keskin F, Esen H et al (2016) Telmisartan ameliorates oxidative stress and subarachnoid haemorrhage-induced cerebral vasospasm. Neurol Res 38:224–231

    Article  PubMed  CAS  Google Scholar 

  132. El-Azab M, Baldowski B, Mysona B et al (2014) Deletion of thioredoxin-interacting protein preserves retinal neuronal function by preventing inflammation and vascular injury. Br J Pharmacol 171:1299–1313

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Al-Gayyar MM, Abdelsaid MA, Matragoon S et al (2011) Thioredoxin interacting protein is a novel mediator of retinal inflammation and neurotoxicity. Br J Pharmacol 164:170–180

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Zhang Q-Y, Pan Y, Wang R et al (2014) Quercetin inhibits AMPK/TXNIP activation and reduces inflammatory lesions to improve insulin signaling defect in the hypothalamus of high fructose-fed rats. J Nutr Biochem 25:420–428

    Article  PubMed  CAS  Google Scholar 

  135. Hua K, Sheng X, T-t L et al (2015) The edaravone and 3-n-butylphthalide ring-opening derivative 10b effectively attenuates cerebral ischemia injury in rats. Acta Pharmacol Sin 36:917–927

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Matragoon S, Al-Gayyar MM, Abdelsaid MA et al (2011) Thioredoxin interacting protein is a novel mediator of retinal inflammation and neurotoxicity. Invest Ophthalmol Vis Sci 52:1006–1006

    Google Scholar 

  137. Nivet-Antoine V, Cottart C-H, Lemaréchal H et al (2010) Trans-resveratrol downregulates Txnip overexpression occurring during liver ischemia-reperfusion. Biochimie 92:1766–1771

    Article  PubMed  CAS  Google Scholar 

  138. Cao G, Jiang N, Hu Y et al (2016) Ruscogenin attenuates cerebral ischemia-induced blood-brain barrier dysfunction by suppressing TXNIP/NLRP3 inflammasome activation and the MAPK pathway. Int J Mol Sci 17:1418

    Article  PubMed Central  CAS  Google Scholar 

  139. Li Y, Li J, Li S et al (2015) Curcumin attenuates glutamate neurotoxicity in the hippocampus by suppression of ER stress-associated TXNIP/NLRP3 inflammasome activation in a manner dependent on AMPK. Toxicol Appl Pharmacol 286:53–63

    Article  PubMed  CAS  Google Scholar 

  140. Hou Y, Wang Y, He Q et al (2018) Nrf2 inhibits NLRP3 inflammasome activation through regulating Trx1/TXNIP complex in cerebral ischemia reperfusion injury. Behav Brain Res 336:32–39

    Article  PubMed  CAS  Google Scholar 

  141. Yamaguchi F, Takata M, Kamitori K et al (2008) Rare sugar D-allose induces specific up-regulation of TXNIP and subsequent G1 cell cycle arrest in hepatocellular carcinoma cells by stabilization of p27kip1. Int J Oncol 32:377–385

    PubMed  CAS  Google Scholar 

  142. Chen J, Deng X, Liu N et al (2016) Quercetin attenuates tau hyperphosphorylation and improves cognitive disorder via suppression of ER stress in a manner dependent on AMPK pathway. J Funct Foods 22:463–476

    Article  CAS  Google Scholar 

  143. Ohizumi Y (2015) A new strategy for preventive and functional therapeutic methods for dementia—approach using natural products. Yakugaku Zasshi: J Pharm Soc Jpn 135:449–464

    Article  CAS  Google Scholar 

  144. Hoon JN, Willigers JM, Troost J et al (2000) Vascular effects of 5-HT1B/1D-receptor agonists in patients with migraine headaches. Clin Pharmacol Ther 68:418–426

    Article  PubMed  Google Scholar 

  145. Gao Y, Li W, Liu Y, et al (2017) Effect of telmisartan on preventing learning and memory deficits via peroxisome proliferator-activated receptor-γ in vascular dementia spontaneously hypertensive rats. Journal of Stroke and Cerebrovascular Diseases.

  146. Varma A, Adams W, Lloyd J et al (2002) Diagnostic patterns of regional atrophy on MRI and regional cerebral blood flow change on SPECT in young onset patients with Alzheimer’s disease, frontotemporal dementia and vascular dementia. Acta Neurol Scand 105:261–269

    Article  PubMed  CAS  Google Scholar 

  147. Li X, Kover KL, Heruth DP et al (2015) New insight into metformin action: regulation of ChREBP and FoXO1 activities in endothelial cells. Mol Endocrinol 29:1184–1194

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Song J, Li J, Hou F et al (2015) Mangiferin inhibits endoplasmic reticulum stress-associated thioredoxin-interacting protein/NLRP3 inflammasome activation with regulation of AMPK in endothelial cells. Metabolism 64:428–437

    Article  PubMed  CAS  Google Scholar 

  149. Wang W, Wu Q-h, Sui Y et al (2017) Rutin protects endothelial dysfunction by disturbing Nox4 and ROS-sensitive NLRP3 inflammasome. Biomed Pharmacother 86:32–40

    Article  PubMed  CAS  Google Scholar 

  150. Pujadas G, De Nigris V, Prattichizzo F et al (2017) The dipeptidyl peptidase-4 (DPP-4) inhibitor teneligliptin functions as antioxidant on human endothelial cells exposed to chronic hyperglycemia and metabolic high-glucose memory. Endocrine 56:509–520

    Article  PubMed  CAS  Google Scholar 

  151. Wongeakin N, Bhattarakosol P, and Patumraj S (2014) Molecular mechanisms of curcumin on diabetes-induced endothelial dysfunctions: Txnip, ICAM-1, and NOX2 expressions. Biomed Res Int 2014.

  152. Duan J, Du C, Shi Y, et al (2017) Thioredoxin-interacting protein deficiency ameliorates diabetic retinal angiogenesis. Int J Biochem Cell Biol

  153. Li J, Wang Y, Wang Y et al (2015) Pharmacological activation of AMPK prevents Drp1-mediated mitochondrial fission and alleviates endoplasmic reticulum stress-associated endothelial dysfunction. J Mol Cell Cardiol 86:62–74

    Article  PubMed  CAS  Google Scholar 

  154. Zhao Y, Li Q, Zhao W et al (2015) Astragaloside IV and cycloastragenol are equally effective in inhibition of endoplasmic reticulum stress-associated TXNIP/NLRP3 inflammasome activation in the endothelium. J Ethnopharmacol 169:210–218

    Article  PubMed  CAS  Google Scholar 

  155. Li Y, Yang J, Chen M-H et al (2015) Ilexgenin A inhibits endoplasmic reticulum stress and ameliorates endothelial dysfunction via suppression of TXNIP/NLRP3 inflammasome activation in an AMPK dependent manner. Pharmacol Res 99:101–115

    Article  PubMed  CAS  Google Scholar 

  156. Xu X, Chen Y, Song J et al (2017) Mangiferin suppresses endoplasmic reticulum stress in perivascular adipose tissue and prevents insulin resistance in the endothelium. Eur J Nutr:1–13

  157. Bedarida T, Baron S, Vibert F et al (2015) Resveratrol decreases TXNIP mRNA and protein nuclear expressions with an arterial function improvement in old mice. J Gerontol A: Biomed Sci Med Sci 71:720–729

    Article  CAS  Google Scholar 

  158. Devi TS, Lee I, Hüttemann M et al (2012) TXNIP links innate host defense mechanisms to oxidative stress and inflammation in retinal Muller glia under chronic hyperglycemia: implications for diabetic retinopathy. Exp Diabetes Res 2012

  159. Spindel ON, Burke RM, Yan C et al (2014) Thioredoxin-interacting protein is a biomechanical regulator of Src activity novelty and significance. Circ Res 114:1125–1132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Park S-Y, Shi X, Pang J et al (2013) Thioredoxin-interacting protein mediates sustained VEGFR2 signaling in endothelial cells required for angiogenesis significance. Arterioscler Thromb Vasc Biol 33:737–743

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Riahi Y, Kaiser N, Cohen G et al (2015) Foam cell-derived 4-hydroxynonenal induces endothelial cell senescence in a TXNIP-dependent manner. J Cell Mol Med 19:1887–1899

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Advani A, Gilbert RE, Thai K et al (2009) Expression, localization, and function of the thioredoxin system in diabetic nephropathy. J Am Soc Nephrol 20:730–741

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Byon CH, Han T, Wu J et al (2015) Txnip ablation reduces vascular smooth muscle cell inflammation and ameliorates atherosclerosis in apolipoprotein E knockout mice. Atherosclerosis 241:313–321

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Zhao Y, Li X, Tang S (2015) Retrospective analysis of the relationship between elevated plasma levels of TXNIP and carotid intima-media thickness in subjects with impaired glucose tolerance and early type 2 diabetes mellitus. Diabetes Res Clin Pract 109:372–377

    Article  PubMed  CAS  Google Scholar 

  165. Obikane H, Abiko Y, Ueno H et al (2010) Effect of endothelial cell proliferation on atherogenesis: a role of p21 Sdi/Cip/Waf1 in monocyte adhesion to endothelial cells. Atherosclerosis 212:116–122

    Article  PubMed  CAS  Google Scholar 

  166. Malek AM, Izumo S (1996) Mechanism of endothelial cell shape change and cytoskeletal remodeling in response to fluid shear stress. J Cell Sci 109:713–726

    PubMed  CAS  Google Scholar 

  167. Kaunas R, Usami S, Chien S (2006) Regulation of stretch-induced JNK activation by stress fiber orientation. Cell Signal 18:1924–1931

    Article  PubMed  CAS  Google Scholar 

  168. Xu D, Kishi H, Kawamichi H et al (2007) Involvement of Fyn tyrosine kinase in actin stress fiber formation in fibroblasts. FEBS Lett 581:5227–5233

    Article  PubMed  CAS  Google Scholar 

  169. Boon RA, Leyen TA, Fontijn RD et al (2010) KLF2-induced actin shear fibers control both alignment to flow and JNK signaling in vascular endothelium. Blood 115:2533–2542

    Article  PubMed  CAS  Google Scholar 

  170. Sun X, Jiao X, Ma Y et al (2016) Trimethylamine N-oxide induces inflammation and endothelial dysfunction in human umbilical vein endothelial cells via activating ROS-TXNIP-NLRP3 inflammasome. Biochem Biophys Res Commun 481:63–70

    Article  PubMed  CAS  Google Scholar 

  171. Park H-Y, Kwon HM, Lim HJ et al (2001) Potential role of leptin in angiogenesis: leptin induces endothelial cell proliferation and expression of matrix metalloproteinases in vivo and in vitro. Exp Mol Med 33:95–102

    Article  PubMed  CAS  Google Scholar 

  172. Azuma K, Watada H, Niihashi M et al (2003) A new En face method is useful to quantitate endothelial damage in vivo. Biochem Biophys Res Commun 309:384–390

    Article  PubMed  CAS  Google Scholar 

  173. Caplan BA, Schwartz CJ (1973) Increased endothelial cell turnover in areas of in vivo Evans Blue uptake in the pig aorta. Atherosclerosis 17:401–417

    Article  PubMed  CAS  Google Scholar 

  174. Dunn LL, Buckle AM, Cooke JP et al (2010) The emerging role of the thioredoxin system in angiogenesis. Arterioscler Thromb Vasc Biol 30:2089–2098

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Piao Z, Yoon S, Kim M, et al (2009) VDUP1 potentiates Ras-mediated angiogenesis via ROS production in endothelial cells. Cellular and molecular biology (Noisy-le-Grand, France) 55:OL1096-103.

  176. Abdelsaid MA, Matragoon S, El-Remessy AB (2013) Thioredoxin-interacting protein expression is required for VEGF-mediated angiogenic signal in endothelial cells. Antioxid Redox Signal 19:2199–2212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Spindel ON, Yan C, Berk BC (2012) Thioredoxin-interacting protein mediates nuclear–to–plasma membrane communication. Arterioscler Thromb Vasc Biol 32:1264–1270

    Article  PubMed  CAS  Google Scholar 

  178. Dunn L, Simpson P, Lecce L, et al (2012) TXNIP knockdown rescues diabetes-related impairment in endothelial progenitor cell-mediated angiogenesis. Am Heart Assoc

  179. Buckle A, Dunn L, Ng MK (2007) Hyperglycaemia inhibits thioredoxin-mediated angiogenesis: implications for impairment of neovascularisation in diabetes mellitus. Heart Lung Circ 16:S214–S215

    Article  Google Scholar 

  180. Dunn LL, Simpson PJ, Prosser HC et al (2014) A critical role for thioredoxin-interacting protein in diabetes-related impairment of angiogenesis. Diabetes 63:675–687

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Han SH, Jeon JH, Ju HR et al (2003) VDUP1 upregulated by TGF-[beta] 1 and 1, 25-dihydorxyvitamin D3 inhibits tumor cell growth by blocking cell-cycle progression. Oncogene 22:4035

    Article  PubMed  CAS  Google Scholar 

  182. Kallay E, Pietschmann P, Toyokuni S et al (2001) Characterization of a vitamin D receptor knockout mouse as a model of colorectal hyperproliferation and DNA damage. Carcinogenesis 22:1429–1435

    Article  PubMed  CAS  Google Scholar 

  183. Zinser GM, Suckow M, Welsh J (2005) Vitamin D receptor (VDR) ablation alters carcinogen-induced tumorigenesis in mammary gland, epidermis and lymphoid tissues. J Steroid Biochem Mol Biol 97:153–164

    Article  PubMed  CAS  Google Scholar 

  184. Maleszewska M, Vanchin B, Harmsen MC et al (2016) The decrease in histone methyltransferase EZH2 in response to fluid shear stress alters endothelial gene expression and promotes quiescence. Angiogenesis 19:9–24

    Article  PubMed  CAS  Google Scholar 

  185. Candelario-Jalil E, Mhadu NH, Al-Dalain SM et al (2001) Time course of oxidative damage in different brain regions following transient cerebral ischemia in gerbils. Neurosci Res 41:233–241

    Article  PubMed  CAS  Google Scholar 

  186. Wang X, Li R, Wang X et al (2015) Umbelliferone ameliorates cerebral ischemia–reperfusion injury via upregulating the PPAR gamma expression and suppressing TXNIP/NLRP3 inflammasome. Neurosci Lett 600:182–187

    Article  PubMed  CAS  Google Scholar 

  187. Baker AF, Koh MY, Williams RR et al (2008) Identification of thioredoxin-interacting protein 1 as a hypoxia-inducible factor 1α-induced gene in pancreatic cancer. Pancreas 36:178–186

    Article  PubMed  CAS  Google Scholar 

  188. Guo Z-N, Xu L, Hu Q et al (2016) Hyperbaric oxygen preconditioning attenuates hemorrhagic transformation through reactive oxygen species/thioredoxin-interacting protein/Nod-like receptor protein 3 pathway in hyperglycemic middle cerebral artery occlusion rats. Crit Care Med 44:e403–e411

    Article  PubMed  CAS  Google Scholar 

  189. Zhao Q, Che X, Zhang H et al (2017) Thioredoxin-interacting protein links endoplasmic reticulum stress to inflammatory brain injury and apoptosis after subarachnoid haemorrhage. J Neuroinflammation 14:104

    Article  PubMed  PubMed Central  Google Scholar 

  190. Sheth SS, Bodnar JS, Ghazalpour A et al (2006) Hepatocellular carcinoma in Txnip-deficient mice. Oncogene 25:3528–3536

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Authors would like to thank Ms. Colby Polonsky, Augusta University, Augusta, Georgia, for her assistance with Fig. 1.

Funding

This work was supported by the National Institute of Health [R01-NS097800 (TI)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tauheed Ishrat.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasoohi, S., Ismael, S. & Ishrat, T. Thioredoxin-Interacting Protein (TXNIP) in Cerebrovascular and Neurodegenerative Diseases: Regulation and Implication. Mol Neurobiol 55, 7900–7920 (2018). https://doi.org/10.1007/s12035-018-0917-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-0917-z

Keywords

Navigation