Skip to main content

Advertisement

Log in

Self-Assembling Peptide Nanofiber Containing Long Motif of Laminin Induces Neural Differentiation, Tubulin Polymerization, and Neurogenesis: In Vitro, Ex Vivo, and In Vivo Studies

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Spinal cord injury (SCI) in humans stayed a ruining and healless disorder. Since longer laminin motif (CQAASIKVAV (CQIK)) better mimics conformation of native region in active site than isoleucine-lysine-valine-alanine-valine (IKVAV) and resulted in improved cellular response so, for the first time in this study, CQIK bounded with two glycines spacer and (RADA)4 as a self-assembling peptide nanofiber backbone (-CQIK) was used. The purpose of this study was to investigate the role of -CQIK in neural differentiation of human endometrial-derived stromal cells (hEnSCs) in vitro, tubulin polymerization ex vivo, and assess the supportive effect of this hydrogel in an animal model of chronic SCI. Results disclosed that proton concentration has direct effect on hEnSCs membrane damage but not on neuroblastoma cells. However, cell viability of neuroblastoma encapsulated into -CQIK was higher than hEnSCs at the concentration of 0.125 % v/w. Gene expression data confirmed neurogenesis, TH over-expression, and glial fibrillary acidic protein (GFAP) suppression eventually through α6 and β1 integrin site. However, it revealed higher neurogenesis as compared to bone morrow homing peptides (BMHP). Although, Basso, Beattie, Bresnahan (BBB) score of chronic model of SCI in rat was higher than control and phosphate-buffered saline (PBS) group but significantly was less than BMHP group. However, -CQIK had induced neurite outgrowth and myelination and inhibited astrogliosis. Tubulin polymerization data using UV spectroscopy showed higher degree of polymerization. However, tubulin polymerization was dependent on nanofiber concentration. Based on our results, it might be concluded that peptidic nanofiber containing long motif of laminin holds great promise for spinal cord injury recovery with increment of neurogenesis and astrogliosis decrement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Macaya D, Spector M (2012) Injectable hydrogel materials for spinal cord regeneration: a review. Biomed Mater 7:012001

    Article  CAS  PubMed  Google Scholar 

  2. Perale G, Rossi F, Sundstrom E, Bacchiega S, Masi M et al (2011) Hydrogels in spinal cord injury repair strategies. ACS Chem Neurosci 2:336–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hejčl A, Lesný P, Přádný M, Michalek J, Jendelova P et al (2008) Biocompatible hydrogels in spinal cord injury repair. Physiol Res 57:S121–S132

    PubMed  Google Scholar 

  4. Jain A, Kim Y-T, McKeon RJ, Bellamkonda RV (2006) In situ gelling hydrogels for conformal repair of spinal cord defects, and local delivery of BDNF after spinal cord injury. Biomaterials 27:497–504

    Article  CAS  PubMed  Google Scholar 

  5. Boudreau N, Jones P (1999) Extracellular matrix and integrin signalling: the shape of things to come. Biochem J 339:481–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang X-M, Huang G-W, Tian Z-H, Ren D-L, Wilson JX (2009) Folate stimulates ERK1/2 phosphorylation and cell proliferation in fetal neural stem cells. Nutr Neurosci 12:226–232

    Article  PubMed  Google Scholar 

  7. Mruthyunjaya S, Rumma M, Ravibhushan G, Anjali S, Padma S (2011) c-Jun/AP-1 transcription factor regulates laminin-1-induced neurite outgrowth in human bone marrow mesenchymal stem cells: role of multiple signaling pathways. FEBS Lett 585:1915–1922

    Article  CAS  PubMed  Google Scholar 

  8. Malinda KM, Nomizu M, Chung M, Delgado M, Kuratomi Y et al (1999) Identification of laminin α1 and β1 chain peptides active for endothelial cell adhesion, tube formation, and aortic sprouting. FASEB J 13:53–62

    CAS  PubMed  Google Scholar 

  9. Yamamura K, Kibbey M, Jun S, Kleinman H (1993) Effect of matrigel and laminin peptide YIGSR on tumor growth and metastasis. 259–265

  10. Yoshida N, Ishii E, Nomizu M, Yamada Y, Mohri S et al (1999) The laminin-derived peptide YIGSR (Tyr–Ile–Gly–Ser–Arg) inhibits human pre-B leukaemic cell growth and dissemination to organs in SCID mice. Br J Cancer 80:1898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Takagi Y, Nomizu M, Gullberg D, MacKrell AJ, Keene DR et al (1996) Conserved neuron promoting activity in drosophila and vertebrate laminin α1. J Biol Chem 271:18074–18081

    Article  CAS  PubMed  Google Scholar 

  12. Tysseling-Mattiace VM, Sahni V, Niece KL, Birch D, Czeisler C et al (2008) Self-assembling nanofibers inhibit glial scar formation and promote axon elongation after spinal cord injury. J Neurosci 28:3814–3823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lampe KJ, Heilshorn SC (2012) Building stem cell niches from the molecule up through engineered peptide materials. Neurosci Lett 519:138–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chambers BJ, Klein NW, Conrad SH, Ruppenthal GC, Sackett GP et al (1995) Reproduction and sera embryotoxicity after immunization of monkeys with the laminin peptides YIGSR, RGD, and IKVAV. Proc Natl Acad Sci 92:6818–6822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yamada M, Kadoya Y, Kasai S, Kato K, Mochizuki M et al (2002) Ile-Lys-Val-Ala-Val (IKVAV)-containing laminin α1 chain peptides form amyloid-like fibrils. FEBS Lett 530:48–52

    Article  CAS  PubMed  Google Scholar 

  16. Kikkawa Y, Hozumi K, Katagiri F, Nomizu M, Kleinman HK et al (2013) Laminin-111-derived peptides and cancer. Cell Adhes Migr 7:150–159

    Article  Google Scholar 

  17. Silva GA, Czeisler C, Niece KL, Beniash E, Harrington DA et al (2004) Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 303:1352–1355

    Article  CAS  PubMed  Google Scholar 

  18. Berry CC, Charles S, Wells S, Dalby MJ, Curtis AS (2004) The influence of transferrin stabilised magnetic nanoparticles on human dermal fibroblasts in culture. Int J Pharm 269:211–225

    Article  CAS  PubMed  Google Scholar 

  19. Massumi M, Abasi M, Babaloo H, Terraf P, Safi M et al (2011) The effect of topography on differentiation fates of matrigel-coated mouse embryonic stem cells cultured on PLGA nanofibrous scaffolds. Tissue Eng A 18:609–620

    Article  Google Scholar 

  20. Gelain F, Bottai D, Vescovi A, Zhang S (2006) Designer self-assembling peptide nanofiber scaffolds for adult mouse neural stem cell 3-dimensional cultures. PLoS One 1:e119

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhang ZX, Zheng QX, Wu YC, Hao DJ (2010) Compatibility of neural stem cells with functionalized self-assembling peptide scaffold in vitro. Biotechnol Bioprocess Eng 15:545–551

    Article  CAS  Google Scholar 

  22. Yang H, Qu T, Yang H, Wei L, Xie Z et al (2013) Self-assembling nanofibers improve cognitive impairment in a transgenic mice model of Alzheimer’s disease. Neurosci Lett 556:63–68

    Article  CAS  PubMed  Google Scholar 

  23. Lévesque SG, Shoichet MS (2006) Synthesis of cell-adhesive dextran hydrogels and macroporous scaffolds. Biomaterials 27:5277–5285

    Article  PubMed  Google Scholar 

  24. Shaw D, Shoichet MS (2003) Toward spinal cord injury repair strategies: peptide surface modification of expanded poly (tetrafluoroethylene) fibers for guided neurite outgrowth in vitro. J Craniofac Surg 14:308–316

    Article  PubMed  Google Scholar 

  25. Ebrahimi-Barough S, Kouchesfahani HM, Ai J, Massumi M (2013) Differentiation of human endometrial stromal cells into oligodendrocyte progenitor cells (OPCs). J Mol Neurosci 51:265–273

    Article  CAS  PubMed  Google Scholar 

  26. Tavakol S, Modarres Mousavi SM, Masummi M, Amani A, Rezayat SM et al (2014) The effect of noggin supplementation in Matrigel nanofiber-based cell culture system for derivation of neural-like cells from human endometrial-derived stromal cells. J Biomed Mater Res A 103:1–7

    Article  PubMed  Google Scholar 

  27. Medistem (2011) Medistem receives FDA approval to begin clinical trial in USA with ERC stem cells. San Diego

  28. Tavakol S, Aligholi H, Gorji A, Eshaghabadi A, Hoveizi E et al (2014) Thermogel nanofiber induces human endometrial-derived stromal cells to neural differentiation: in vitro and in vivo studies in rat. J Biomed Mater Res A 102:4590–4597

    PubMed  Google Scholar 

  29. Dadras A, Riazi GH, Afrasiabi A, Naghshineh A, Ghalandari B et al (2013) In vitro study on the alterations of brain tubulin structure and assembly affected by magnetite nanoparticles. JBIC J Biol Inorg Chem 18:357–369

    Article  CAS  PubMed  Google Scholar 

  30. Gheshlaghi ZN, Riazi GH, Ahmadian S, Ghafari M, Mahinpour R (2008) Toxicity and interaction of titanium dioxide nanoparticles with microtubule protein. Acta Biochim Biophys Sin 40:777–782

    Article  CAS  PubMed  Google Scholar 

  31. Holtz A, Nyström B, Gerdin B (1989) Blocking weight-induced spinal cord injury in rats: effects of TRH or naloxone on motor function recovery and spinal cord blood flow. Acta Neurol Scand 80:215–220

    Article  CAS  PubMed  Google Scholar 

  32. Basso DM, Beattie MS, Bresnahan JC (1995) A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma 12:1–21

    Article  CAS  PubMed  Google Scholar 

  33. Shivachar A (2008) Isolation and culturing of glial, neuronal and neural stem cell types encapsulated in biodegradable peptide hydrogel. Topics in Tissue Eng 4

  34. Tavakol S (2014) Acidic pH derived from cancer cells may induce failed reprogramming of normal differentiated cells adjacent tumor cells and turn them into cancer cells. Med Hypotheses 83:668–672

    Article  CAS  PubMed  Google Scholar 

  35. Wang X, Zhao Y, Xiao Z, Chen B, Wei Z et al (2009) Alternative translation of OCT4 by an internal ribosome entry site and its novel function in stress response. Stem Cells 27:1265–1275

    Article  CAS  PubMed  Google Scholar 

  36. Tavakol S, Saber R, Hoveizi E, Aligholi H, Ai J, et al. (2015) Chimeric self-assembling nanofiber containing bone marrow homing peptide’s motif induces motor neuron recovery in animal model of chronic spinal cord injury; an in vitro and in vivo investigation. Mol Neurobiol: 1–11

  37. Noble M, Smith J, Power J, MAYER-PRÖSCHEL M (2003) Redox state as a central modulator of precursor cell function. Ann N Y Acad Sci 991:251–271

    Article  CAS  PubMed  Google Scholar 

  38. Horie N, So K, Moriya T, Kitagawa N, Tsutsumi K et al (2008) Effects of oxygen concentration on the proliferation and differentiation of mouse neural stem cells in vitro. Cell Mol Neurobiol 28:833–845

    Article  CAS  PubMed  Google Scholar 

  39. Morrison SJ, Csete M, Groves AK, Melega W, Wold B et al (2000) Culture in reduced levels of oxygen promotes clonogenic sympathoadrenal differentiation by isolated neural crest stem cells. J Neurosci 20:7370–7376

    CAS  PubMed  Google Scholar 

  40. Rosen P, Boulton M, Moriarty P, Khaliq A, McLeod D (1991) Effect of varying oxygen concentrations on the proliferation of retinal microvascular cells in vitro. Exp Eye Res 53:597–601

    Article  CAS  PubMed  Google Scholar 

  41. Holzwarth C, Vaegler M, Gieseke F, Pfister SM, Handgretinger R et al (2010) Low physiologic oxygen tensions reduce proliferation and differentiation of human multipotent mesenchymal stromal cells. BMC Cell Biol 11:11

    Article  PubMed  PubMed Central  Google Scholar 

  42. Tsai T-T, Guttapalli A, Oguz E, Chen L-H, Vaccaro AR et al (2007) Fibroblast growth factor-2 maintains the differentiation potential of nucleus pulposus cells in vitro: implications for cell-based transplantation therapy. Spine 32:495–502

    Article  PubMed  Google Scholar 

  43. Balgude A, Yu X, Szymanski A, Bellamkonda R (2001) Agarose gel stiffness determines rate of DRG neurite extension in 3D cultures. Biomaterials 22:1077–1084

    Article  CAS  PubMed  Google Scholar 

  44. Flanagan LA, Ju Y-E, Marg B, Osterfield M, Janmey PA (2002) Neurite branching on deformable substrates. Neuroreport 13:2411

    Article  PubMed  PubMed Central  Google Scholar 

  45. Georges PC, Miller WJ, Meaney DF, Sawyer ES, Janmey PA (2006) Matrices with compliance comparable to that of brain tissue select neuronal over glial growth in mixed cortical cultures. Biophys J 90:3012–3018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Saha K, Keung AJ, Irwin EF, Li Y, Little L et al (2008) Substrate modulus directs neural stem cell behavior. Biophys J 95:4426–4438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Leipzig ND, Shoichet MS (2009) The effect of substrate stiffness on adult neural stem cell behavior. Biomaterials 30:6867–6878

    Article  CAS  PubMed  Google Scholar 

  48. Pan L, North HA, Sahni V, Jeong SJ, Mcguire TL et al (2014) β1-integrin and integrin linked kinase regulate astrocytic differentiation of neural stem cells. PLoS One 9:e104335

    Article  PubMed  PubMed Central  Google Scholar 

  49. Taraballi F, Natalello A, Campione M, Villa O, Doglia SM, et al. (2010) Glycine-spacers influence functional motifs exposure and self-assembling propensity of functionalized substrates tailored for neural stem cell cultures. Front Neuroeng 3

  50. Tamada M, Sheetz MP, Sawada Y (2004) Activation of a signaling cascade by cytoskeleton stretch. Dev Cell 7:709–718

    Article  CAS  PubMed  Google Scholar 

  51. Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689

    Article  CAS  PubMed  Google Scholar 

  52. Han R, Tu L, Yang M, Xu T, Ma Y et al (2013) Combined application of neural stem cell and self-assembly isoleucine-lysine-valine-alanine-valine nanofiber gel transplantation in the promotion of function recovery of spinal cord injury in rats. Zhonghua yi xue za zhi 93:1669–1673

    PubMed  Google Scholar 

  53. Kleinman HK, Weeks BS, Cannon FB, Sweeney TM, Sephel GC et al (1991) Identification of a 110-kDa nonintegrin cell surface laminin-binding protein which recognizes an a chain neurite-promoting peptide. Arch Biochem Biophys 290:320–325

    Article  CAS  PubMed  Google Scholar 

  54. Kibbey MC, Jucker M, Weeks BS, Neve RL, Van Nostrand WE et al (1993) Beta-amyloid precursor protein binds to the neurite-promoting IKVAV site of laminin. Proc Natl Acad Sci 90:10150–10153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grant from Iran National Science Foundation (INSF) for the financial support (grant number 92022532) and Tehran University of Medical Sciences, (TUMS) Tehran, Iran Grant Number (93-01-87-23996).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jafar Ai or Seyed Mahdi Rezayat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavakol, S., Saber, R., Hoveizi, E. et al. Self-Assembling Peptide Nanofiber Containing Long Motif of Laminin Induces Neural Differentiation, Tubulin Polymerization, and Neurogenesis: In Vitro, Ex Vivo, and In Vivo Studies. Mol Neurobiol 53, 5288–5299 (2016). https://doi.org/10.1007/s12035-015-9448-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9448-z

Keywords

Navigation