Skip to main content

Advertisement

Log in

SNX15 Regulates Cell Surface Recycling of APP and Aβ Generation

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

A Correction to this article was published on 02 November 2022

This article has been updated

Abstract

Amyloid-β (Aβ) peptide plays an essential role in the pathogenesis of Alzheimer’s disease (AD) and is generated from amyloid-β precursor protein (APP) through sequential proteolytic cleavages by β-site APP cleaving enzyme 1 (BACE1) and γ-secretase. Trafficking dysregulation of APP, BACE1, and γ-secretase may affect Aβ generation and disease pathogenesis. Sorting nexin 15 (SNX15) is known to regulate protein trafficking. Here, we report that SNX15 is abundantly expressed in mouse neurons and astrocytes. In addition, we show that although not affecting the protein levels of APP, BACE1, and γ-secretase components and the activity of BACE1 and γ-secretase, overexpression and downregulation of SNX15 reduce and promote Aβ production, respectively. Furthermore, we find that overexpression of SNX15 increases APP protein levels in cell surface through accelerating APP recycling, whereas downregulation of SNX15 has an opposite effect. Finally, we show that exogenous expression of human SNX15 in the hippocampal dentate gyrus by adeno-associated virus (AAV) infection can significantly reduce Aβ pathology in the hippocampus and improve short-term working memory in the APPswe/PSEN1dE9 double transgenic AD model mice. Together, our results suggest that SNX15 regulates the recycling of APP to cell surface and, thus, its processing for Aβ generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

References

  1. Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81(2):741–766

    CAS  PubMed  Google Scholar 

  2. O’Brien C (1996) Auguste D. and Alzheimer’s disease. Science 273(5271):28

    Article  PubMed  Google Scholar 

  3. Maurer K, Volk S, Gerbaldo H (1997) Auguste D and Alzheimer’s disease. Lancet 349(9064):1546–1549

    Article  CAS  PubMed  Google Scholar 

  4. Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendiaz EA, Denis P, Teplow DB, Ross S et al (1999) Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286(5440):735–741

    Article  CAS  PubMed  Google Scholar 

  5. Vassar R, Kandalepas PC (2011) The beta-secretase enzyme BACE1 as a therapeutic target for Alzheimer’s disease. Alzheimers Res Ther 3(3):20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. De Strooper B, Saftig P, Craessaerts K, Vanderstichele H, Guhde G, Annaert W, Von Figura K, Van Leuven F (1998) Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature 391(6665):387–390

    Article  PubMed  Google Scholar 

  7. Edbauer D, Winkler E, Regula JT, Pesold B, Steiner H, Haass C (2003) Reconstitution of gamma-secretase activity. Nat Cell Biol 5(5):486–488

    Article  CAS  PubMed  Google Scholar 

  8. Kaether C, Haass C, Steiner H (2006) Assembly, trafficking and function of gamma-secretase. Neurodegener Dis 3(4–5):275–283

    Article  CAS  PubMed  Google Scholar 

  9. Li Y, Bohm C, Dodd R, Chen F, Qamar S, Schmitt-Ulms G, Fraser PE, St George-Hyslop PH (2014) Structural biology of presenilin 1 complexes. Mol Neurodegener 9(1):59

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lammich S, Kojro E, Postina R, Gilbert S, Pfeiffer R, Jasionowski M, Haass C, Fahrenholz F (1999) Constitutive and regulated alpha-secretase cleavage of Alzheimer’s amyloid precursor protein by a disintegrin metalloprotease. Proc Natl Acad Sci U S A 96(7):3922–3927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lichtenthaler SF, Haass C (2004) Amyloid at the cutting edge: activation of alpha-secretase prevents amyloidogenesis in an Alzheimer disease mouse model. J Clin Invest 113(10):1384–1387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Postina R, Schroeder A, Dewachter I, Bohl J, Schmitt U, Kojro E, Prinzen C, Endres K et al (2004) A disintegrin-metalloproteinase prevents amyloid plaque formation and hippocampal defects in an Alzheimer disease mouse model. J Clin Invest 113(10):1456–1464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sullivan SE, Dillon GM, Sullivan JM, Ho A (2014) Mint proteins are required for synaptic activity-dependent amyloid precursor protein (APP) trafficking and amyloid beta generation. J Biol Chem 289(22):15374–15383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Knauer MF, Fouts DA, Knauer DJ (2004) Identification of a domain in the amyloid precursor protein (APP) required for the LRP-mediated endocytosis of APP: protease complexes. Neurobiol Aging 25:S442–S442

    Article  Google Scholar 

  15. Cam JA, Zerbinatti CV, Li YH, Bu GJ (2005) Rapid endocytosis of the low density lipoprotein receptor-related protein modulates cell surface distribution and processing of the beta-amyloid precursor protein. J Biol Chem 280(15):15464–15470

    Article  CAS  PubMed  Google Scholar 

  16. Lakshmana MK, Yoon IS, Chen E, Bianchi E, Koo EH, Kang DE (2009) Novel role of RanBP9 in BACE1 processing of amyloid precursor protein and amyloid beta peptide generation. J Biol Chem 284(18):11863–11872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Andersen OM, Reiche J, Schmidt V, Gotthardt M, Spoelgen R, Behlke J, von Arnim CAF, Breiderhoff T et al (2005) Neuronal sorting protein-related receptor sorLA/LR11 regulates processing of the amyloid precursor protein. Proc Natl Acad Sci U S A 102(38):13461–13466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schmidt V, Sporbert A, Rohe M, Reimer T, Rehm A, Andersen OM, Willnow TE (2007) SorLA/LR11 regulates processing of amyloid precursor protein via interaction with adaptors GGA and PACS-1. J Biol Chem 282(45):32956–32964

    Article  CAS  PubMed  Google Scholar 

  19. Burgos PV, Mardones GA, Rojas AL, daSilva LL, Prabhu Y, Hurley JH, Bonifacino JS (2010) Sorting of the Alzheimer’s disease amyloid precursor protein mediated by the AP-4 complex. Dev Cell 18(3):425–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Watanabe T, Hikichi Y, Willuweit A, Shintani Y, Horiguchi T (2012) FBL2 regulates amyloid precursor protein (APP) metabolism by promoting ubiquitination-dependent APP degradation and inhibition of APP endocytosis. J Neurosci 32(10):3352–3365

    Article  CAS  PubMed  Google Scholar 

  21. Neumann S, Schobel S, Jager S, Trautwein A, Haass C, Pietrzik CU, Lichtenthaler SF (2006) Amyloid precursor-like protein 1 influences endocytosis and proteolytic processing of the amyloid precursor protein. J Biol Chem 281(11):7583–7594

    Article  CAS  PubMed  Google Scholar 

  22. Lee JY, Retamal C, Cuitino L, Caruano-Yzermans A, Shin JE, van Kerkhof P, Marzolo MP, Bu GJ (2008) Adaptor protein sorting nexin 17 regulates amyloid precursor protein trafficking and processing in the early endosomes. J Biol Chem 283(17):11501–11508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fuentealba RA, Barria MI, Lee J, Cam J, Araya C, Escudero CA, Inestrosa NC, Bronfman FC et al (2007) ApoER2 expression increases Abeta production while decreasing amyloid precursor protein (APP) endocytosis: possible role in the partitioning of APP into lipid rafts and in the regulation of gamma-secretase activity. Mol Neurodegener 2:14

    Article  PubMed  PubMed Central  Google Scholar 

  24. Yang GZ, Yang M, Lim Y, Lu JJ, Wang TH, Qi JG, Zhong JH, Zhou XF (2012) Huntingtin associated protein 1 regulates trafficking of the amyloid precursor protein and modulates amyloid beta levels in neurons. J Neurochem 122(5):1010–1022

    Article  CAS  PubMed  Google Scholar 

  25. Schneider A, Rajendran L, Honsho M, Gralle M, Donnert G, Wouters F, Hell SW, Simons M (2008) Flotillin-dependent clustering of the amyloid precursor protein regulates its endocytosis and amyloidogenic processing in neurons. J Neurosci 28(11):2874–2882

    Article  CAS  PubMed  Google Scholar 

  26. Worby CA, Dixon JE (2002) Sorting out the cellular functions of sorting nexins. Nat Rev Mol Cell Biol 3(12):919–931

    Article  CAS  PubMed  Google Scholar 

  27. Cullen PJ (2008) Endosomal sorting and signalling: an emerging role for sorting nexins. Nat Rev Mol Cell Biol 9(7):574–582

    Article  CAS  PubMed  Google Scholar 

  28. Teasdale RD, Collins BM (2012) Insights into the PX (phox-homology) domain and SNX (sorting nexin) protein families: structures, functions and roles in disease. Biochem J 441(1):39–59

    Article  CAS  PubMed  Google Scholar 

  29. Schobel S, Neumann S, Hertweck M, Dislich B, Kuhn PH, Kremmer E, Seed B, Baumeister R et al (2008) A novel sorting nexin modulates endocytic trafficking and alpha-secretase cleavage of the amyloid precursor protein. J Biol Chem 283(21):14257–14268

    Article  PubMed  Google Scholar 

  30. Okada H, Zhang W, Peterhoff C, Hwang JC, Nixon RA, Ryu SH, Kim TW (2010) Proteomic identification of sorting nexin 6 as a negative regulator of BACE1-mediated APP processing. Faseb J 24(8):2783–2794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Muirhead G, Dev KK (2014) The expression of neuronal sorting nexin 8 (SNX8) exacerbates abnormal cholesterol levels. J Mol Neurosci 53(1):125–134

    Article  CAS  PubMed  Google Scholar 

  32. Zhao YH, Wang YS, Yang JY, Wang X, Zhao YJ, Zhang X, Zhang YW (2012) Sorting nexin 12 interacts with BACE1 and regulates BACE1-mediated APP processing. Mol Neurodegener 7:30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang X, Huang T, Zhao Y, Zheng Q, Thompson Robert C, Bu G, Y-w Z, Hong W et al (2014) Sorting nexin 27 regulates Aβ production through modulating γ-secretase activity. Cell Rep 9(3):1023–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang X, Huang T, Bu G, Xu H (2014) Dysregulation of protein trafficking in neurodegeneration. Mol Neurodegener 9:31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Danson C, Brown E, Hemmings OJ, McGough IJ, Yarwood S, Heesom KJ, Carlton JG, Martin-Serrano J et al (2013) SNX15 links clathrin endocytosis to the PtdIns3P early endosome independently of the APPL1 endosome. J Cell Sci 126(Pt 21):4885–4899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Iwaya N, Takasu H, Goda N, Shirakawa M, Tanaka T, Hamada D, Hiroaki H (2013) MIT domain of Vps4 is a Ca2+-dependent phosphoinositide-binding domain. J Biochem 153(5):473–481

    Article  CAS  PubMed  Google Scholar 

  37. Phillips SA, Barr VA, Haft DH, Taylor SI, Haft CR (2001) Identification and characterization of SNX15, a novel sorting nexin involved in protein trafficking. J Biol Chem 276(7):5074–5084

    Article  CAS  PubMed  Google Scholar 

  38. Barr VA, Phillips SA, Taylor SI, Haft CR (2000) Overexpression of a novel sorting nexin, SNX15, affects endosome morphology and protein trafficking. Traffic 1(11):904–916

    Article  CAS  PubMed  Google Scholar 

  39. Zhang YW, Wang R, Liu Q, Zhang H, Liao FF, Xu H (2007) Presenilin/gamma-secretase-dependent processing of beta-amyloid precursor protein regulates EGF receptor expression. Proc Natl Acad Sci U S A 104(25):10613–10618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mammen AL, Huganir RL, O’Brien RJ (1997) Redistribution and stabilization of cell surface glutamate receptors during synapse formation. J Neurosci 17(19):7351–7358

    CAS  PubMed  Google Scholar 

  41. Zhang YW, Luo WJ, Wang H, Lin P, Vetrivel KS, Liao F, Li F, Wong PC et al (2005) Nicastrin is critical for stability and trafficking but not association of other presenilin/gamma-secretase components. J Biol Chem 280(17):17020–17026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ehlers MD (2000) Reinsertion or degradation of AMPA receptors determined by activity-dependent endocytic sorting. Neuron 28(2):511–525

    Article  CAS  PubMed  Google Scholar 

  43. Wang X, Zhao YJ, Zhang XF, Badie H, Zhou Y, Mu YL, Loo LS, Cai L et al (2013) Loss of sorting nexin 27 contributes to excitatory synaptic dysfunction by modulating glutamate receptor recycling in Down’s syndrome. Nat Med 19(4):473–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Beckervordersandforth R, Deshpande A, Schaffner I, Huttner HB, Lepier A, Lie DC, Gotz M (2014) In vivo targeting of adult neural stem cells in the dentate gyrus by a split-cre approach. Stem Cell Rep 2(2):153–162

    Article  CAS  Google Scholar 

  45. Meng L, Person RE, Huang W, Zhu PJ, Costa-Mattioli M, Beaudet AL (2013) Truncation of Ube3a-ATS unsilences paternal Ube3a and ameliorates behavioral defects in the Angelman syndrome mouse model. PLoS Genet 9(12), e1004039

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kuroda K, Yamada S, Tanaka M, Iizuka M, Yano H, Mori D, Tsuboi D, Nishioka T et al (2011) Behavioral alterations associated with targeted disruption of exons 2 and 3 of the Disc1 gene in the mouse. Hum Mol Genet 20(23):4666–4683

    Article  CAS  PubMed  Google Scholar 

  47. Funamoto S, Sasaki T, Ishihara S, Nobuhara M, Nakano M, Watanabe-Takahashi M, Saito T, Kakuda N et al (2013) Substrate ectodomain is critical for substrate preference and inhibition of gamma-secretase. Nat Commun 4:2529

    Article  PubMed  PubMed Central  Google Scholar 

  48. De Strooper B, Annaert W, Cupers P, Saftig P, Craessaerts K, Mumm JS, Schroeter EH, Schrijvers V et al (1999) A presenilin-1-dependent gamma-secretase-like protease mediates release of Notch intracellular domain. Nature 398(6727):518–522

    Article  PubMed  Google Scholar 

  49. Jiang S, Li Y, Zhang X, Bu G, Xu H, Zhang YW (2014) Trafficking regulation of proteins in Alzheimer’s disease. Mol Neurodegener 9:6

    Article  PubMed  PubMed Central  Google Scholar 

  50. Cossec JC, Simon A, Marquer C, Moldrich RX, Leterrier C, Rossier J, Duyckaerts C, Lenkei Z et al (2010) Clathrin-dependent APP endocytosis and Abeta secretion are highly sensitive to the level of plasma membrane cholesterol. Biochim Biophys Acta 1801(8):846–852

    Article  CAS  PubMed  Google Scholar 

  51. Ghosal K, Vogt DL, Liang M, Shen Y, Lamb BT, Pimplikar SW (2009) Alzheimer’s disease-like pathological features in transgenic mice expressing the APP intracellular domain. Proc Natl Acad Sci U S A 106(43):18367–18372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Li B, Arime Y, Hall FS, Uhl GR, Sora I (2010) Impaired spatial working memory and decreased frontal cortex BDNF protein level in dopamine transporter knockout mice. Eur J Pharmacol 628(1–3):104–107

    Article  CAS  PubMed  Google Scholar 

  53. Prior M, Dargusch R, Ehren JL, Chiruta C, Schubert D (2013) The neurotrophic compound J147 reverses cognitive impairment in aged Alzheimer’s disease mice. Alzheimers Res Ther 5(3):25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Dr. Robert Vassar for providing the BACE1 antibody and Dr. Wanjin Hong for providing the SNX15 plasmid. This study was supported by grants from the National Institutes of Health (R01AG021173, R01AG038710, R01AG044420, R01NS046673, and R21AG049247) and from the National Natural Science Foundation of China (Nos. 81225008, 81161120496, 91332112, 91332114, and U1405222) and Fundamental Research Funds for the Central Universities of China.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-wu Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 713 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, T., Niu, M., Ji, C. et al. SNX15 Regulates Cell Surface Recycling of APP and Aβ Generation. Mol Neurobiol 53, 3690–3701 (2016). https://doi.org/10.1007/s12035-015-9306-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9306-z

Keywords

Navigation