Skip to main content
Log in

Stronger Dopamine D1 Receptor-Mediated Neurotransmission in Dyskinesia

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Radioligand binding assays to rat striatal dopamine D1 receptors showed that brain lateralization of the dopaminergic system were not due to changes in expression but in agonist affinity. D1 receptor-mediated striatal imbalance resulted from a significantly higher agonist affinity in the left striatum. D1 receptors heteromerize with dopamine D3 receptors, which are considered therapeutic targets for dyskinesia in parkinsonian patients. Expression of both D3 and D1–D3 receptor heteromers were increased in samples from 6-hydroxy-dopamine-hemilesioned rats rendered dyskinetic by treatment with 3, 4-dihydroxyphenyl-l-alanine (l-DOPA). Similar findings were obtained using striatal samples from primates. Radioligand binding studies in the presence of a D3 agonist led in dyskinetic, but not in lesioned or l-DOPA-treated rats, to a higher dopamine sensitivity. Upon D3-receptor activation, the affinity of agonists for binding to the right striatal D1 receptor increased. Excess dopamine coming from l-DOPA medication likely activates D3 receptors thus making right and left striatal D1 receptors equally responsive to dopamine. These results show that dyskinesia occurs concurrently with a right/left striatal balance in D1 receptor-mediated neurotransmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

6-OHDA:

6-hydroxy dopamine

AIM:

Abnormal involuntary movement

l-DOPA:

3,4-dihydroxyphenyl-l-alanine

7-OH-DPAT:

7-hydroxy-N,N-di-n-propyl-2-aminotetralin

LID:

l-DOPA-induced dyskinesia

7-OH-PIPAT:

7-hydroxy-2-[N-n-propyl-N-(3′-iodo-2′- propenyl)-amino]tetralin

References

  1. Gerfen CR, Engber TM, Mahan LC, Susel Z, Chase TN, Monsma FJ Jr, Sibley DR (1990) D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250(4986):1429–1432

    Article  CAS  PubMed  Google Scholar 

  2. Surmeier DJ, Ding J, Day M, Wang Z, Shen W (2007) D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends Neurosci 30(5):228–235. doi:10.1016/j.tins.2007.03.008

    Article  CAS  PubMed  Google Scholar 

  3. Yamamoto BK, Lane RF, Freed CR (1982) Normal rats trained to circle show asymmetric caudate dopamine release. Life Sci 30(25):2155–2162

    Article  CAS  PubMed  Google Scholar 

  4. Cannon DM, Klaver JM, Peck SA, Rallis-Voak D, Erickson K, Drevets WC (2009) Dopamine type-1 receptor binding in major depressive disorder assessed using positron emission tomography and [11C]NNC-112. Neuropsychopharmacology 34(5):1277–1287. doi:10.1038/npp.2008.194

    Article  CAS  PubMed  Google Scholar 

  5. Ridray S, Griffon N, Mignon V, Souil E, Carboni S, Diaz J, Schwartz JC, Sokoloff P (1998) Coexpression of dopamine D1 and D3 receptors in islands of Calleja and shell of nucleus accumbens of the rat: Opposite and synergistic functional interactions. Eur J Neurosci 10(5):1676–1686

    Article  CAS  PubMed  Google Scholar 

  6. Cotzias GC, Van Woert MH, Schiffer LM (1967) Aromatic amino acids and modification of parkinsonism. N Engl J Med 276(7):374–379. doi:10.1056/NEJM196702162760703

    Article  CAS  PubMed  Google Scholar 

  7. Papavasiliou PS, Cotzias GC, Duby SE, Steck AJ, Fehling C, Bell MA (1972) Levodopa in Parkinsonism: Potentiation of central effects with a peripheral inhibitor. N Engl J Med 286(1):8–14. doi:10.1056/NEJM197201062860102

    Article  CAS  PubMed  Google Scholar 

  8. Birkmayer W, Hornykiewicz O (1998) The effect of l-3,4-dihydroxyphenylalanine (=DOPA) on akinesia in parkinsonism. Parkinsonism Relat Disord 4(2):59–60

    Article  CAS  PubMed  Google Scholar 

  9. Huot P, Johnston TH, Koprich JB, Fox SH, Brotchie JM (2013) The pharmacology of L-DOPA-induced dyskinesia in Parkinson’s disease. Pharmacol Rev 65(1):171–222. doi:10.1124/pr.111.005678

    Article  CAS  PubMed  Google Scholar 

  10. Olanow CW, Schapira AH (2013) Therapeutic prospects for Parkinson disease. Ann Neurol 74(3):337–347. doi:10.1002/ana.24011

    Article  CAS  PubMed  Google Scholar 

  11. Schapira AH, Emre M, Jenner P, Poewe W (2009) Levodopa in the treatment of Parkinson’s disease. Eur J Neurol 16(9):982–989. doi:10.1111/j.1468-1331.2009.02697.x

    Article  CAS  PubMed  Google Scholar 

  12. Zlotnik Y, Giladi N, Hilel A, Shapira Y, Goldstein S, Gurevich T (2014) Levodopa-carbidopa intestinal gel (LCIG) infusion during pregnancy and delivery: First documented case. Parkinsonism Relat Disord. doi:10.1016/j.parkreldis.2014.09.018

    PubMed  Google Scholar 

  13. Obeso JA, Olanow CW, Nutt JG (2000) Levodopa motor complications in Parkinson’s disease. Trends Neurosci 23(10 Suppl):S2–S7

    Article  CAS  PubMed  Google Scholar 

  14. Fabbrini G, Brotchie JM, Grandas F, Nomoto M, Goetz CG (2007) Levodopa-induced dyskinesias. Mov Disord 22(10):1379–1389. doi:10.1002/mds.21475, quiz 1523

    Article  PubMed  Google Scholar 

  15. Feyder M, Bonito-Oliva A, Fisone G (2011) L-DOPA-induced dyskinesia and abnormal signaling in striatal medium spiny neurons: Focus on dopamine D1 receptor-mediated transmission. Front Behav Neurosci 5:71. doi:10.3389/fnbeh.2011.00071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bordet R, Ridray S, Carboni S, Diaz J, Sokoloff P, Schwartz JC (1997) Induction of dopamine D3 receptor expression as a mechanism of behavioral sensitization to levodopa. Proc Natl Acad Sci U S A 94(7):3363–3367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bordet R, Ridray S, Schwartz JC, Sokoloff P (2000) Involvement of the direct striatonigral pathway in levodopa-induced sensitization in 6-hydroxydopamine-lesioned rats. Eur J Neurosci 12(6):2117–2123

    Article  CAS  PubMed  Google Scholar 

  18. Guillin O, Diaz J, Carroll P, Griffon N, Schwartz JC, Sokoloff P (2001) BDNF controls dopamine D3 receptor expression and triggers behavioural sensitization. Nature 411(6833):86–89. doi:10.1038/35075076

    Article  CAS  PubMed  Google Scholar 

  19. Bezard E, Ferry S, Mach U, Stark H, Leriche L, Boraud T, Gross C, Sokoloff P (2003) Attenuation of levodopa-induced dyskinesia by normalizing dopamine D3 receptor function. Nat Med 9(6):762–767. doi:10.1038/nm875

    Article  CAS  PubMed  Google Scholar 

  20. Rietschel M, Krauss H, Muller DJ, Schulze TG, Knapp M, Marwinski K, Maroldt AO, Paus S, Grunhage F, Propping P, Maier W, Held T, Nothen MM (2000) Dopamine D3 receptor variant and tardive dyskinesia. Eur Arch Psychiatry Clin Neurosci 250(1):31–35

    Article  CAS  PubMed  Google Scholar 

  21. Visanji NP, Fox SH, Johnston T, Reyes G, Millan MJ, Brotchie JM (2009) Dopamine D3 receptor stimulation underlies the development of L-DOPA-induced dyskinesia in animal models of Parkinson’s disease. Neurobiol Dis 35(2):184–192. doi:10.1016/j.nbd.2008.11.010

    Article  CAS  PubMed  Google Scholar 

  22. Cote SR, Chitravanshi VC, Bleickardt C, Sapru HN, Kuzhikandathil EV (2014) Overexpression of the dopamine D3 receptor in the rat dorsal striatum induces dyskinetic behaviors. Behav Brain Res 263:46–50. doi:10.1016/j.bbr.2014.01.011

    Article  CAS  PubMed  Google Scholar 

  23. Bonaventura J, Rico AJ, Moreno E, Sierra S, Sanchez M, Luquin N, Farre D, Muller CE, Martinez-Pinilla E, Cortes A, Mallol J, Armentero MT, Pinna A, Canela EI, Lluis C, McCormick PJ, Lanciego JL, Casado V, Franco R (2014) L-DOPA-treatment in primates disrupts the expression of A(2A) adenosine-CB(1) cannabinoid-D(2) dopamine receptor heteromers in the caudate nucleus. Neuropharmacology 79:90–100. doi:10.1016/j.neuropharm.2013.10.036

    Article  CAS  PubMed  Google Scholar 

  24. Pinna A, Bonaventura J, Farre D, Sanchez M, Simola N, Mallol J, Lluis C, Costa G, Baqi Y, Muller CE, Cortes A, McCormick P, Canela EI, Martinez-Pinilla E, Lanciego JL, Casado V, Armentero MT, Franco R (2014) L-DOPA disrupts adenosine A(2A)-cannabinoid CB(1)-dopamine D(2) receptor heteromer cross-talk in the striatum of hemiparkinsonian rats: Biochemical and behavioral studies. Exp Neurol 253:180–191. doi:10.1016/j.expneurol.2013.12.021

    Article  CAS  PubMed  Google Scholar 

  25. Rashid AJ, So CH, Kong MM, Furtak T, El-Ghundi M, Cheng R, O’Dowd BF, George SR (2007) D1-D2 dopamine receptor heterooligomers with unique pharmacology are coupled to rapid activation of Gq/11 in the striatum. Proc Natl Acad Sci U S A 104(2):654–659. doi:10.1073/pnas.0604049104

    Article  CAS  PubMed  Google Scholar 

  26. Hasbi A, Fan T, Alijaniaram M, Nguyen T, Perreault ML, O’Dowd BF, George SR (2009) Calcium signaling cascade links dopamine D1-D2 receptor heteromer to striatal BDNF production and neuronal growth. Proc Natl Acad Sci U S A 106(50):21377–21382. doi:10.1073/pnas.0903676106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hasbi A, O’Dowd BF, George SR (2010) Heteromerization of dopamine D2 receptors with dopamine D1 or D5 receptors generates intracellular calcium signaling by different mechanisms. Curr Opin Pharmacol 10(1):93–99. doi:10.1016/j.coph.2009.09.011

    Article  CAS  PubMed  Google Scholar 

  28. Verma V, Hasbi A, O’Dowd BF, George SR (2010) Dopamine D1-D2 receptor Heteromer-mediated calcium release is desensitized by D1 receptor occupancy with or without signal activation: Dual functional regulation by G protein-coupled receptor kinase 2. J Biol Chem 285(45):35092–35103. doi:10.1074/jbc.M109.088625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Marcellino D, Ferre S, Casado V, Cortes A, Le Foll B, Mazzola C, Drago F, Saur O, Stark H, Soriano A, Barnes C, Goldberg SR, Lluis C, Fuxe K, Franco R (2008) Identification of dopamine D1-D3 receptor heteromers. Indications for a role of synergistic D1-D3 receptor interactions in the striatum. J Biol Chem 283(38):26016–26025. doi:10.1074/jbc.M710349200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fiorentini C, Busi C, Gorruso E, Gotti C, Spano P, Missale C (2008) Reciprocal regulation of dopamine D1 and D3 receptor function and trafficking by heterodimerization. Mol Pharmacol 74(1):59–69. doi:10.1124/mol.107.043885

    Article  CAS  PubMed  Google Scholar 

  31. Paxinos G, Watson C, Pennisi M, Topple A (1985) Bregma, lambda and the interaural midpoint in stereotaxic surgery with rats of different sex, strain and weight. J Neurosci Methods 13(2):139–143

    Article  CAS  PubMed  Google Scholar 

  32. Winkler C, Kirik D, Bjorklund A, Cenci MA (2002) L-DOPA-induced dyskinesia in the intrastriatal 6-hydroxydopamine model of parkinson’s disease: Relation to motor and cellular parameters of nigrostriatal function. Neurobiol Dis 10(2):165–186

    Article  PubMed  Google Scholar 

  33. Schallert T, Kozlowski DA, Humm JL, Cocke RR (1997) Use-dependent structural events in recovery of function. Adv Neurol 73:229–238

    CAS  PubMed  Google Scholar 

  34. Kirik D, Winkler C, Bjorklund A (2001) Growth and functional efficacy of intrastriatal nigral transplants depend on the extent of nigrostriatal degeneration. J Neurosci 21(8):2889–2896

    CAS  PubMed  Google Scholar 

  35. Lee CS, Cenci MA, Schulzer M, Bjorklund A (2000) Embryonic ventral mesencephalic grafts improve levodopa-induced dyskinesia in a rat model of Parkinson’s disease. Brain 123(Pt 7):1365–1379

    Article  PubMed  Google Scholar 

  36. Lundblad M, Andersson M, Winkler C, Kirik D, Wierup N, Cenci MA (2002) Pharmacological validation of behavioural measures of akinesia and dyskinesia in a rat model of Parkinson’s disease. Eur J Neurosci 15(1):120–132

    Article  CAS  PubMed  Google Scholar 

  37. Ohlin KE, Sebastianutto I, Adkins CE, Lundblad C, Lockman PR, Cenci MA (2012) Impact of L-DOPA treatment on regional cerebral blood flow and metabolism in the basal ganglia in a rat model of Parkinson’s disease. Neuroimage 61(1):228–239. doi:10.1016/j.neuroimage.2012.02.066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kurlan R, Kim MH, Gash DM (1991) Oral levodopa dose–response study in MPTP-induced hemiparkinsonian monkeys: Assessment with a new rating scale for monkey parkinsonism. Mov Disord 6(2):111–118. doi:10.1002/mds.870060205

    Article  CAS  PubMed  Google Scholar 

  39. Lanciego JL, Rodriguez-Oroz MC, Blesa FJ, Alvarez-Erviti L, Guridi J, Barroso-Chinea P, Smith Y, Obeso JA (2008) Lesion of the centromedian thalamic nucleus in MPTP-treated monkeys. Mov Disord 23(5):708–715. doi:10.1002/mds.21906

    Article  PubMed  PubMed Central  Google Scholar 

  40. Langston JW, Widner H, Goetz CG, Brooks D, Fahn S, Freeman T, Watts R (1992) Core assessment program for intracerebral transplantations (CAPIT). Mov Disord 7(1):2–13. doi:10.1002/mds.870070103

    Article  CAS  PubMed  Google Scholar 

  41. Goetz CG, Stebbins GT, Shale HM, Lang AE, Chernik DA, Chmura TA, Ahlskog JE, Dorflinger EE (1994) Utility of an objective dyskinesia rating scale for Parkinson’s disease: Inter- and intrarater reliability assessment. Mov Disord 9(4):390–394. doi:10.1002/mds.870090403

    Article  CAS  PubMed  Google Scholar 

  42. Lanciego JL, Vazquez A (2012) The basal ganglia and thalamus of the long-tailed macaque in stereotaxic coordinates. A template atlas based on coronal, sagittal and horizontal brain sections. Brain Struct Funct 217(2):613–666. doi:10.1007/s00429-011-0370-5

    Article  PubMed  Google Scholar 

  43. Casado V, Cortes A, Ciruela F, Mallol J, Ferre S, Lluis C, Canela EI, Franco R (2007) Old and new ways to calculate the affinity of agonists and antagonists interacting with G-protein-coupled monomeric and dimeric receptors: the receptor-dimer cooperativity index. Pharmacol Ther 116(3):343–354. doi:10.1016/j.pharmthera.2007.05.010

    Article  CAS  PubMed  Google Scholar 

  44. Casado V, Ferrada C, Bonaventura J, Gracia E, Mallol J, Canela EI, Lluis C, Cortes A, Franco R (2009) Useful pharmacological parameters for G-protein-coupled receptor homodimers obtained from competition experiments. Agonist–antagonist binding modulation. Biochem Pharmacol 78(12):1456–1463. doi:10.1016/j.bcp.2009.07.012

    Article  CAS  PubMed  Google Scholar 

  45. Franco R, Casado V, Mallol J, Ferrada C, Ferre S, Fuxe K, Cortes A, Ciruela F, Lluis C, Canela EI (2006) The two-state dimer receptor model: a general model for receptor dimers. Mol Pharmacol 69(6):1905–1912. doi:10.1124/mol.105.020685

    Article  CAS  PubMed  Google Scholar 

  46. Casado V, Canti C, Mallol J, Canela EI, Lluis C, Franco R (1990) Solubilization of A1 adenosine receptor from pig brain: Characterization and evidence of the role of the cell membrane on the coexistence of high- and low-affinity states. J Neurosci Res 26(4):461–473. doi:10.1002/jnr.490260409

    Article  CAS  PubMed  Google Scholar 

  47. Soderberg O, Leuchowius KJ, Gullberg M, Jarvius M, Weibrecht I, Larsson LG, Landegren U (2008) Characterizing proteins and their interactions in cells and tissues using the in situ proximity ligation assay. Methods 45(3):227–232. doi:10.1016/j.ymeth.2008.06.014

    Article  PubMed  Google Scholar 

  48. Trifilieff P, Rives ML, Urizar E, Piskorowski RA, Vishwasrao HD, Castrillon J, Schmauss C, Slattman M, Gullberg M, Javitch JA (2011) Detection of antigen interactions ex vivo by proximity ligation assay: Endogenous dopamine D2-adenosine A2A receptor complexes in the striatum. Biotechniques 51(2):111–118. doi:10.2144/000113719

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Moreno E, Hoffmann H, Gonzalez-Sepulveda M, Navarro G, Casado V, Cortes A, Mallol J, Vignes M, McCormick PJ, Canela EI, Lluis C, Moratalla R, Ferre S, Ortiz J, Franco R (2011) Dopamine D1-histamine H3 receptor heteromers provide a selective link to MAPK signaling in GABAergic neurons of the direct striatal pathway. J Biol Chem 286(7):5846–5854. doi:10.1074/jbc.M110.161489

    Article  CAS  PubMed  Google Scholar 

  50. Gonzalez S, Moreno-Delgado D, Moreno E, Perez-Capote K, Franco R, Mallol J, Cortes A, Casado V, Lluis C, Ortiz J, Ferre S, Canela E, McCormick PJ (2012) Circadian-related heteromerization of adrenergic and dopamine D(4) receptors modulates melatonin synthesis and release in the pineal gland. PLoS Biol 10(6):e1001347. doi:10.1371/journal.pbio.1001347

    Article  PubMed  PubMed Central  Google Scholar 

  51. Guigoni C, Aubert I, Li Q, Gurevich VV, Benovic JL, Ferry S, Mach U, Stark H, Leriche L, Hakansson K, Bioulac BH, Gross CE, Sokoloff P, Fisone G, Gurevich EV, Bloch B, Bezard E (2005) Pathogenesis of levodopa-induced dyskinesia: Focus on D1 and D3 dopamine receptors. Parkinsonism Relat Disord 11(Suppl 1):S25–S29. doi:10.1016/j.parkreldis.2004.11.005

    Article  PubMed  Google Scholar 

  52. Schneider LH, Murphy RB, Coons EE (1982) Lateralization of striatal dopamine (D2) receptors in normal rats. Neurosci Lett 33(3):281–284

    Article  CAS  PubMed  Google Scholar 

  53. Navarro G, Ferre S, Cordomi A, Moreno E, Mallol J, Casado V, Cortes A, Hoffmann H, Ortiz J, Canela EI, Lluis C, Pardo L, Franco R, Woods AS (2010) Interactions between intracellular domains as key determinants of the quaternary structure and function of receptor heteromers. J Biol Chem 285(35):27346–27359. doi:10.1074/jbc.M110.115634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Silva MA, Topic B, Lamounier-Zepter V, Huston JP, Tomaz C, Barros M (2007) Evidence for hemispheric specialization in the marmoset (Callithrix penicillata) based on lateralization of behavioral/neurochemical correlations. Brain Res Bull 74(6):416–428. doi:10.1016/j.brainresbull.2007.07.012

    Article  PubMed  Google Scholar 

  55. Frasnelli E (2013) Brain and behavioral lateralization in invertebrates. Front Psychol 4:939. doi:10.3389/fpsyg.2013.00939

    Article  PubMed  PubMed Central  Google Scholar 

  56. Gracia E, Farre D, Cortes A, Ferrer-Costa C, Orozco M, Mallol J, Lluis C, Canela EI, McCormick PJ, Franco R, Fanelli F, Casado V (2013) The catalytic site structural gate of adenosine deaminase allosterically modulates ligand binding to adenosine receptors. FASEB J 27(3):1048–1061. doi:10.1096/fj.12-212621

    Article  CAS  PubMed  Google Scholar 

  57. Ferre S, Baler R, Bouvier M, Caron MG, Devi LA, Durroux T, Fuxe K, George SR, Javitch JA, Lohse MJ, Mackie K, Milligan G, Pfleger KD, Pin JP, Volkow ND, Waldhoer M, Woods AS, Franco R (2009) Building a new conceptual framework for receptor heteromers. Nat Chem Biol 5(3):131–134. doi:10.1038/nchembio0309-131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lee FJ, Xue S, Pei L, Vukusic B, Chery N, Wang Y, Wang YT, Niznik HB, Yu XM, Liu F (2002) Dual regulation of NMDA receptor functions by direct protein-protein interactions with the dopamine D1 receptor. Cell 111(2):219–230

    Article  CAS  PubMed  Google Scholar 

  59. Fiorentini C, Gardoni F, Spano P, Di Luca M, Missale C (2003) Regulation of dopamine D1 receptor trafficking and desensitization by oligomerization with glutamate N-methyl-D-aspartate receptors. J Biol Chem 278(22):20196–20202. doi:10.1074/jbc.M213140200

    Article  CAS  PubMed  Google Scholar 

  60. Fiorentini C, Busi C, Spano P, Missale C (2008) Role of receptor heterodimers in the development of L-dopa-induced dyskinesias in the 6-hydroxydopamine rat model of Parkinson’s disease. Parkinsonism Relat Disord 14(Suppl 2):S159–S164. doi:10.1016/j.parkreldis.2008.04.022

    Article  PubMed  Google Scholar 

  61. Aubert I, Guigoni C, Hakansson K, Li Q, Dovero S, Barthe N, Bioulac BH, Gross CE, Fisone G, Bloch B, Bezard E (2005) Increased D1 dopamine receptor signaling in levodopa-induced dyskinesia. Ann Neurol 57(1):17–26. doi:10.1002/ana.20296

    Article  CAS  PubMed  Google Scholar 

  62. Lebel M, Chagniel L, Bureau G, Cyr M (2010) Striatal inhibition of PKA prevents levodopa-induced behavioural and molecular changes in the hemiparkinsonian rat. Neurobiol Dis 38(1):59–67. doi:10.1016/j.nbd.2009.12.027

    Article  CAS  PubMed  Google Scholar 

  63. Picconi B, Centonze D, Hakansson K, Bernardi G, Greengard P, Fisone G, Cenci MA, Calabresi P (2003) Loss of bidirectional striatal synaptic plasticity in L-DOPA-induced dyskinesia. Nat Neurosci 6(5):501–506. doi:10.1038/nn1040

    CAS  PubMed  Google Scholar 

  64. Santini E, Valjent E, Usiello A, Carta M, Borgkvist A, Girault JA, Herve D, Greengard P, Fisone G (2007) Critical involvement of cAMP/DARPP-32 and extracellular signal-regulated protein kinase signaling in L-DOPA-induced dyskinesia. J Neurosci 27(26):6995–7005. doi:10.1523/JNEUROSCI.0852-07.2007

    Article  CAS  PubMed  Google Scholar 

  65. Santini E, Sgambato-Faure V, Li Q, Savasta M, Dovero S, Fisone G, Bezard E (2010) Distinct changes in cAMP and extracellular signal-regulated protein kinase signalling in L-DOPA-induced dyskinesia. PLoS One 5(8):e12322. doi:10.1371/journal.pone.0012322

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by grants SAF2009-07276 and BFU2012-37907, from the Spanish Ministerio de Ciencia y Tecnología (current name: Ministerio de Economía y Competitividad), including FEDER funding (fondo Europeo de desarrollo regional). We acknowledge the critical reading and helpful comments of Dr. Milos Petrovic. We thank Manel Bosch, of the Unitat de Miscroscopia Optica Avançada, Fac. of Biology, University of Barcelona, for the ImageJ macro to analyze PLA results.

Conflict of interests

The authors declare no conflict of interests

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Franco.

Additional information

Vicent Casadó, José L. Lanciego and Rafael Franco are Senior authors of the manuscript

Daniel Farré, Ana Muñoz and Estefanía Moreno have contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farré, D., Muñoz, A., Moreno, E. et al. Stronger Dopamine D1 Receptor-Mediated Neurotransmission in Dyskinesia. Mol Neurobiol 52, 1408–1420 (2015). https://doi.org/10.1007/s12035-014-8936-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8936-x

Keywords

Navigation