Skip to main content
Log in

Glucocorticoid Receptor β Acts as a Co-activator of T-Cell Factor 4 and Enhances Glioma Cell Proliferation

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

We previously reported that glucocorticoid receptor β (GRβ) regulates injury-mediated astrocyte activation and contributes to glioma pathogenesis via modulation of β-catenin/T-cell factor/lymphoid enhancer factor (TCF/LEF) transcriptional activity. The aim of this study was to characterize the mechanism behind cross-talk between GRβ and β-catenin/TCF in the progression of glioma. Here, we reported that GRβ knockdown reduced U118 and Shg44 glioma cell proliferation in vitro and in vivo. Mechanistically, we found that GRβ knockdown decreased TCF/LEF transcriptional activity without affecting β-catenin/TCF complex. Both GRα and GRβ directly interact with TCF-4, while only GRβ is required for sustaining TCF/LEF activity under hormone-free condition. GRβ bound to the N-terminus domain of TCF-4 its influence on Wnt signaling required both ligand- and DNA-binding domains (LBD and DBD, respectively). GRβ and TCF-4 interaction is enough to maintain the TCF/LEF activity at a high level in the absence of β-catenin stabilization. Taken together, these results suggest a novel cross-talk between GRβ and TCF-4 which regulates Wnt signaling and the proliferation in gliomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Holland JD, Klaus A, Garratt AN, Birchmeier W (2013) Wnt signaling in stem and cancer stem cells. Curr Opin Cell Biol 25:254–264

    Article  CAS  PubMed  Google Scholar 

  2. van de Wetering M, Sancho E, Verweij C, de Lau W, Oving I, Hurlstone A, van der Horn K, Batlle E, Coudreuse D, Haramis AP, Tjon-Pon-Fong M, Moerer P, van den Born M, Soete G, Pals S, Eilers M, Medema R, Clevers H (2002) The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 111:241–250

    Article  PubMed  Google Scholar 

  3. Barkai N, Rose MD, Wingreen NS (1998) Protease helps yeast find mating partners. Nature 396:422–423

    Article  CAS  PubMed  Google Scholar 

  4. Kino T, Su YA, Chrousos GP (2009) Human glucocorticoid receptor isoform beta: recent understanding of its potential implications in physiology and pathophysiology. Cell Mol Life Sci 66:3435–3448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lewis-Tuffin LJ, Jewell CM, Bienstock RJ, Collins JB, Cidlowski JA (2007) Human glucocorticoid receptor beta binds RU-486 and is transcriptionally active. Mol Cell Biol 27:2266–2282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kino T, Manoli I, Kelkar S, Wang Y, Su YA, Chrousos GP (2009) Glucocorticoid receptor (GR) beta has intrinsic, GRalpha-independent transcriptional activity. Biochem Biophys Res Commun 381:671–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Olkku A, Mahonen A (2009) Calreticulin mediated glucocorticoid receptor export is involved in beta-catenin translocation and Wnt signalling inhibition in human osteoblastic cells. Bone 44:555–565

    Article  CAS  PubMed  Google Scholar 

  8. Taniguchi Y, Iwasaki Y, Tsugita M, Nishiyama M, Taguchi T, Okazaki M, Nakayama S, Kambayashi M, Hashimoto K, Terada Y (2010) Glucocorticoid receptor-beta and receptor-gamma exert dominant negative effect on gene repression but not on gene induction. Endocrinology 151:3204–3213

    Article  CAS  PubMed  Google Scholar 

  9. Yin Y, Zhang X, Li Z, Deng L, Jiao G, Zhang B, Xie P, Mu H, Qiao W, Zou J (2013) Glucocorticoid receptor beta regulates injury-mediated astrocyte activation and contributes to glioma pathogenesis via modulation of beta-catenin/TCF transcriptional activity. Neurobiol Dis 59:165–176

    Article  CAS  PubMed  Google Scholar 

  10. Zhang X, Clark AF, Yorio T (2008) FK506-binding protein 51 regulates nuclear transport of the glucocorticoid receptor beta and glucocorticoid responsiveness. Invest Ophthalmol Vis Sci 49:1037–1047

    Article  PubMed  PubMed Central  Google Scholar 

  11. Yang C, Iyer RR, Yu AC, Yong RL, Park DM, Weil RJ, Ikejiri B, Brady RO, Lonser RR, Zhuang Z (2012) Beta-catenin signaling initiates the activation of astrocytes and its dysregulation contributes to the pathogenesis of astrocytomas. Proc Natl Acad Sci U S A 109:6963–6968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang J, Huang K, Shi Z, Zou J, Wang Y, Jia Z, Zhang A, Han L, Yue X, Liu N, Jiang T, You Y, Pu P, Kang C (2011) High beta-catenin/Tcf-4 activity confers glioma progression via direct regulation of AKT2 gene expression. Neuro Oncol 13:600–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pu P, Zhang Z, Kang C, Jiang R, Jia Z, Wang G, Jiang H (2009) Downregulation of Wnt2 and beta-catenin by siRNA suppresses malignant glioma cell growth. Cancer Gene Ther 16:351–361

    Article  CAS  PubMed  Google Scholar 

  14. Comes N, Borras T (2007) Functional delivery of synthetic naked siRNA to the human trabecular meshwork in perfused organ cultures. Mol Vis 13:1363–1374

    CAS  PubMed  Google Scholar 

  15. Forrest MP, Waite AJ, Martin-Rendon E, Blake DJ (2013) Knockdown of human TCF4 affects multiple signaling pathways involved in cell survival, epithelial to mesenchymal transition and neuronal differentiation. PLoS One 8:e73169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yin Y, Sun W, Xiang J, Deng L, Zhang B, Xie P, Qiao W, Zou J, Liu C (2013) Glutamine synthetase functions as a negative growth regulator in glioma. J Neurooncol 114:59–69

    Article  CAS  PubMed  Google Scholar 

  17. Diermeier-Daucher S, Clarke ST, Hill D, Vollmann-Zwerenz A, Bradford JA, Brockhoff G (2009) Cell type specific applicability of 5-ethynyl-2′-deoxyuridine (EdU) for dynamic proliferation assessment in flow cytometry. Cytometry A 75:535–546

    Article  PubMed  Google Scholar 

  18. Zou J, Wang YX, Mu HJ, Xiang J, Wu W, Zhang B, Xie P (2011) Down-regulation of glutamine synthetase enhances migration of rat astrocytes after in vitro injury. Neurochem Int 58:404–413

    Article  CAS  PubMed  Google Scholar 

  19. Shih IM, Yu J, He TC, Vogelstein B, Kinzler KW (2000) The beta-catenin binding domain of adenomatous polyposis coli is sufficient for tumor suppression. Cancer Res 60:1671–1676

    CAS  PubMed  Google Scholar 

  20. Wen W, Ding J, Sun W, Wu K, Ning B, Gong W, He G, Huang S, Ding X, Yin P, Chen L, Liu Q, Xie W, Wang H (2010) Suppression of cyclin D1 by hypoxia-inducible factor-1 via direct mechanism inhibits the proliferation and 5-fluorouracil-induced apoptosis of A549 cells. Cancer Res 70:2010–2019

    Article  CAS  PubMed  Google Scholar 

  21. Goleva E, Li LB, Eves PT, Strand MJ, Martin RJ, Leung DY (2006) Increased glucocorticoid receptor beta alters steroid response in glucocorticoid-insensitive asthma. Am J Respir Crit Care Med 173:607–616

    Article  CAS  PubMed  Google Scholar 

  22. Gonsalves FC, Klein K, Carson BB, Katz S, Ekas LA, Evans S, Nagourney R, Cardozo T, Brown AM, DasGupta R (2011) An RNAi-based chemical genetic screen identifies three small-molecule inhibitors of the Wnt/wingless signaling pathway. Proc Natl Acad Sci U S A 108:5954–5963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yi F, Merrill BJ (2007) Stem cells and TCF proteins: a role for beta-catenin-independent functions. Stem Cell Rev 3:39–48

    Article  CAS  PubMed  Google Scholar 

  24. Kim SY, Dunn IF, Firestein R, Gupta P, Wardwell L, Repich K, Schinzel AC, Wittner B, Silver SJ, Root DE, Boehm JS, Ramaswamy S, Lander ES, Hahn WC (2010) CK1epsilon is required for breast cancers dependent on beta-catenin activity. PLoS One 5:e8979

    Article  PubMed  PubMed Central  Google Scholar 

  25. Miravet S, Piedra J, Miro F, Itarte E, Garcia de Herreros A, Dunach M (2002) The transcriptional factor Tcf-4 contains different binding sites for beta-catenin and plakoglobin. J Biol Chem 277:1884–1891

    Article  CAS  PubMed  Google Scholar 

  26. Liu H, Huang X, Wang H, Shen A, Cheng C (2009) Dexamethasone inhibits proliferation and stimulates SSeCKS expression in C6 rat glioma cell line. Brain Res 1265:1–12

    Article  CAS  PubMed  Google Scholar 

  27. Piette C, Deprez M, Roger T, Noel A, Foidart JM, Munaut C (2009) The dexamethasone-induced inhibition of proliferation, migration, and invasion in glioma cell lines is antagonized by macrophage migration inhibitory factor (MIF) and can be enhanced by specific MIF inhibitors. J Biol Chem 284:32483–32492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yue X, Lan F, Yang W, Yang Y, Han L, Zhang A, Liu J, Zeng H, Jiang T, Pu P, Kang C (2010) Interruption of beta-catenin suppresses the EGFR pathway by blocking multiple oncogenic targets in human glioma cells. Brain Res 1366:27–37

    Article  CAS  PubMed  Google Scholar 

  29. Maeda Y, Rachez C, Hawel L 3rd, Byus CV, Freedman LP, Sladek FM (2002) Polyamines modulate the interaction between nuclear receptors and vitamin D receptor-interacting protein 205. Mol Endocrinol 16:1502–1510

    Article  CAS  PubMed  Google Scholar 

  30. Takayama S, Rogatsky I, Schwarcz LE, Darimont BD (2006) The glucocorticoid receptor represses cyclin D1 by targeting the Tcf-beta-catenin complex. J Biol Chem 281:17856–17863

    Article  CAS  PubMed  Google Scholar 

  31. Schule R, Dictus C, Campos B, Wan F, Felsberg J, Ahmadi R, Centner FS, Grabe N, Reifenberger G, Bermejo JL, Unterberg A, Herold-Mende C (2012) Potential canonical wnt pathway activation in high-grade astrocytomas. Scientific World Journal 2012:697313

    Article  PubMed  PubMed Central  Google Scholar 

  32. Liu C, Tu Y, Sun X, Jiang J, Jin X, Bo X, Li Z, Bian A, Wang X, Liu D, Wang Z, Ding L (2011) Wnt/beta-catenin pathway in human glioma: expression pattern and clinical/prognostic correlations. Clin Exp Med 11:105–112

    Article  CAS  PubMed  Google Scholar 

  33. Zhang N, Wei P, Gong A, Chiu WT, Lee HT, Colman H, Huang H, Xue J, Liu M, Wang Y, Sawaya R, Xie K, Yung WK, Medema RH, He X, Huang S (2011) FoxM1 promotes beta-catenin nuclear localization and controls Wnt target-gene expression and glioma tumorigenesis. Cancer Cell 20:427–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wu Y, Zhang Y, Zhang H, Yang X, Wang Y, Ren F, Liu H, Zhai Y, Jia B, Yu J, Chang Z (2010) p15RS attenuates Wnt/{beta}-catenin signaling by disrupting {beta}-catenin.TCF4 interaction. J Biol Chem 285:34621–34631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hong CF, Chou YT, Lin YS, Wu CW (2009) MAD2B, a novel TCF4-binding protein, modulates TCF4-mediated epithelial-mesenchymal transdifferentiation. J Biol Chem 284:19613–19622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Poy F, Lepourcelet M, Shivdasani RA, Eck MJ (2001) Structure of a human Tcf4-beta-catenin complex. Nat Struct Biol 8:1053–1057

    Article  CAS  PubMed  Google Scholar 

  37. Costa AM, Pereira-Castro I, Ricardo E, Spencer F, Fisher S, da Costa LT (2013) GRG5/AES interacts with T-cell factor 4 (TCF4) and downregulates Wnt signaling in human cells and zebrafish embryos. PLoS One 8:e67694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Drees F, Pokutta S, Yamada S, Nelson WJ, Weis WI (2005) Alpha-catenin is a molecular switch that binds E-cadherin-beta-catenin and regulates actin-filament assembly. Cell 123:903–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Peng X, Cuff LE, Lawton CD, DeMali KA (2010) Vinculin regulates cell-surface E-cadherin expression by binding to beta-catenin. J Cell Sci 123:567–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kauppi B, Jakob C, Farnegardh M, Yang J, Ahola H, Alarcon M, Calles K, Engstrom O, Harlan J, Muchmore S, Ramqvist AK, Thorell S, Ohman L, Greer J, Gustafsson JA, Carlstedt-Duke J, Carlquist M (2003) The three-dimensional structures of antagonistic and agonistic forms of the glucocorticoid receptor ligand-binding domain: RU-486 induces a transconformation that leads to active antagonism. J Biol Chem 278:22748–22754

    Article  CAS  PubMed  Google Scholar 

  41. Milhon J, Lee S, Kohli K, Chen D, Hong H, Stallcup MR (1997) Identification of amino acids in the tau 2-region of the mouse glucocorticoid receptor that contribute to hormone binding and transcriptional activation. Mol Endocrinol 11:1795–1805

    CAS  PubMed  Google Scholar 

  42. Kucera T, Waltner-Law M, Scott DK, Prasad R, Granner DK (2002) A point mutation of the AF2 transactivation domain of the glucocorticoid receptor disrupts its interaction with steroid receptor coactivator 1. J Biol Chem 277:26098–26102

    Article  CAS  PubMed  Google Scholar 

  43. Onate SA, Tsai SY, Tsai MJ, O’Malley BW (1995) Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science 270:1354–1357

    Article  CAS  PubMed  Google Scholar 

  44. Ding XF, Anderson CM, Ma H, Hong H, Uht RM, Kushner PJ, Stallcup MR (1998) Nuclear receptor-binding sites of coactivators glucocorticoid receptor interacting protein 1 (GRIP1) and steroid receptor coactivator 1 (SRC-1): multiple motifs with different binding specificities. Mol Endocrinol 12:302–313

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (NFSC) grants (no. 81372710 and 81000527 to Jian Zou; no. 81101801 to Pei-Hua Lu; no. 81100547 to Jie Xiang); Natural Science Foundation of Jiangsu Province (NFSJS) grant (no. BK2010159 to Jian Zou). We thank Bert Vogelstein for having provided the pcDNA/Myc TCF4, pGL3-OT, and pGL3-OF plasmids, these plasmids were obtained through the Addgene plasmid depository. The authors thank Clarity Manuscript Consultants for their language editing.

Financial Support

This work was supported by Natural Science Foundation of China (NFSC) grants (no. 81372710 and 81000527 to Jian Zou; no. 81101801 to Peihua Lu; no. 81100547 to Jie Xiang); Natural Science Foundation of Jiangsu Province (NFSJS) grant (no. BK2010159 to Jian Zou).

Conflict of Interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Zou.

Additional information

Qian Wang, Pei-Hua Lu, and Zhi-Feng Shi equally contributed to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

GRβ knock-down enhanced GRα mediated trans-repression on TCF/LEF in U118 glioma cells. a A cell growth assay showed GRβ knock-down enhanced the growth inhibition of dexamethasone (Dex) in U118 cells. scGRβ-U118 and siGRβ-U118 cells were treated with vehicle or Dex (1 μM) every day and cultured for 3 days. The relative cell number of Dex treated scGRβ-U118 and siGRβ-U118 cells were compared. **p<0.01, n=6. b Luciferase reporter assays showed GRβ knock-down enhanced the inhibition of Dex on TCF/LEF transcriptional activity. scGRβ-U118 and siGRβ-U118 cells were transfected with an OT/OF-Luc Flash reporter and pRL-TK. After treatment with vehicle or Dex (1μM) for 3 days, luciferase activities were assayed. The normalized luciferase of Dex treated scGRβ-U118 and siGRβ-U118 cells were compared. **p<0.01, n=6. (GIF 12 kb)

High resolution image (TIFF 270 kb)

Supplementary Fig. 2

Cell growth assay showed that Mifepristone (RU486) inhibited cell growth of glioma cells. U118 (a) and Shg44 (b) glioma cells were treated with vehicle or RU486 (1μM) for different periods. *p<0.05, n=6. (GIF 8 kb)

High resolution image (TIFF 241 kb)

Supplementary Fig. 3

RU486 did not inhibit TCF/LEF activity in glioma cells. a U118 and Shg44 cells were transfected with an OT/OF-Luc Flash reporter and pRL-TK for 24 h. After treatment with vehicle or RU486 (1μM) for another 12 h, the luciferase activities were assayed. b IP results showed that RU486 had no effects on the interaction between TCF-4 and GRβ. Cells were treated with RU486 (1μM) or vehicle for 24 h. Cell proteins were immunoprecipitated with mouse anti-TCF-4 and analyzed by an IB with rabbit anti-GRβ and TCF-4. The IB of lysate showed that no change of GRβ expression occurred after the treatment with RU486. (GIF 11 kb)

High resolution image (TIFF 349 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Lu, PH., Shi, ZF. et al. Glucocorticoid Receptor β Acts as a Co-activator of T-Cell Factor 4 and Enhances Glioma Cell Proliferation. Mol Neurobiol 52, 1106–1118 (2015). https://doi.org/10.1007/s12035-014-8900-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8900-9

Keywords

Navigation