Skip to main content

Advertisement

Log in

Protection of Radial Glial-Like Cells in the Hippocampus of APP/PS1 Mice: a Novel Mechanism of Memantine in the Treatment of Alzheimer’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The failure of adult neurogenesis in the hippocampal dentate gyrus (DG) is closely correlated with memory decline in Alzheimer’s disease (AD). Radial glial-like cells (RGLs) localized to the adult DG generate intermediate progenitor cells and immature neurons and thus contribute to adult hippocampus neurogenesis. Memantine (MEM) has been indicated to dramatically increase hippocampal neurogenesis by promoting the proliferation of RGLs. In this study, we examined the effect of MEM on the capacity for hippocampal cell proliferation and the amount of RGLs in APPswe/PS1∆E9 transgenic (APP/PS1) mice between 9 and 13 months of age. MEM could enhance hippocampal neurogenesis and increase the number of RGLs in the DG subgranular zone (DG-SGZ) of APP/PS1 mice of both ages. Moreover, MEM decreased amyloidogenesis in 13-month-old APP/PS1 mice and protected cultured radial glia cells (RGCs, L2.3 cells) from apoptosis induced by the β amyloid peptide (Aβ). Additionally, MEM inhibited microglial activation in a vertical process in DG-SGZ of APP/PS1 mice and decreased interacting with RGL processes. Reelin is involved in the proliferation of RGLs in the hippocampus, which was typically upregulated in the hippocampus of APP/PS1 mice by MEM and thought to be an active signaling pathway associated with the MEM-induced increase in RGLs. Our data suggest a previously uncharacterized role for MEM in treating AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Blennow K, de Leon MJ, Zetterberg H (2006) Alzheimer’s disease. Lancet 368(9533):387–403

    Article  CAS  PubMed  Google Scholar 

  2. Nikolaev A, McLaughlin T, O’Leary DD, Tessier-Lavigne M (2009) APP binds DR6 to trigger axon pruning and neuron death via distinct caspases. Nature 457(7232):981–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Backman L, Jones S, Berger AK, Laukka EJ, Small BJ (2004) Multiple cognitive deficits during the transition to Alzheimer’s disease. J Intern Med 256(3):195–204

    Article  CAS  PubMed  Google Scholar 

  4. Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH (1998) Neurogenesis in the adult human hippocampus. Nat Med 4(11):1313–1317

    Article  CAS  PubMed  Google Scholar 

  5. Xu H, Huang W, Wang Y, Sun W, Tang J, Li D, Xu P, Guo L, Yin ZQ, Fan X (2013) The function of BMP4 during neurogenesis in the adult hippocampus in Alzheimer’s disease. Ageing Res Rev 12(1):157–164

    Article  CAS  PubMed  Google Scholar 

  6. Ming GL, Song H (2005) Adult neurogenesis in the mammalian central nervous system. Annu Rev Neurosci 28:223–250

    Article  CAS  PubMed  Google Scholar 

  7. Trouche S, Bontempi B, Roullet P, Rampon C (2009) Recruitment of adult-generated neurons into functional hippocampal networks contributes to updating and strengthening of spatial memory. Proc Natl Acad Sci U S A 106(14):5919–5924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Namba T, Maekawa M, Yuasa S, Kohsaka S, Uchino S (2009) The Alzheimer’s disease drug memantine increases the number of radial glia-like progenitor cells in adult hippocampus. Glia 57(10):1082–1090

    Article  PubMed  Google Scholar 

  9. van Praag H, Schinder AF, Christie BR, Toni N, Palmer TD, Gage FH (2002) Functional neurogenesis in the adult hippocampus. Nature 415(6875):1030–1034

    Article  PubMed  Google Scholar 

  10. Bonaguidi MA, Wheeler MA, Shapiro JS, Stadel RP, Sun GJ, Ming GL, Song H (2011) In vivo clonal analysis reveals self-renewing and multipotent adult neural stem cell characteristics. Cell 145(7):1142–1155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dranovsky A, Picchini AM, Moadel T, Sisti AC, Yamada A, Kimura S, Leonardo ED, Hen R (2011) Experience dictates stem cell fate in the adult hippocampus. Neuron 70(5):908–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Anthony TE, Klein C, Fishell G, Heintz N (2004) Radial glia serve as neuronal progenitors in all regions of the central nervous system. Neuron 41(6):881–890

    Article  CAS  PubMed  Google Scholar 

  13. Encinas JM, Michurina TV, Peunova N, Park JH, Tordo J, Peterson DA, Fishell G, Koulakov A, Enikolopov G (2011) Division-coupled astrocytic differentiation and age-related depletion of neural stem cells in the adult hippocampus. Cell Stem Cell 8(5):566–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lugert S, Basak O, Knuckles P, Haussler U, Fabel K, Gotz M, Haas CA, Kempermann G, Taylor V, Giachino C (2010) Quiescent and active hippocampal neural stem cells with distinct morphologies respond selectively to physiological and pathological stimuli and aging. Cell Stem Cell 6(5):445–456

    Article  CAS  PubMed  Google Scholar 

  15. Bonaguidi MA, Song J, Ming GL, Song H (2012) A unifying hypothesis on mammalian neural stem cell properties in the adult hippocampus. Curr Opin Neurobiol 22(5):754–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kempermann G (2011) The pessimist’s and optimist’s views of adult neurogenesis. Cell 145(7):1009–1011

    Article  CAS  PubMed  Google Scholar 

  17. Hellweg R, Wirth Y, Janetzky W, Hartmann S (2012) Efficacy of memantine in delaying clinical worsening in Alzheimer’s disease (AD): responder analyses of nine clinical trials with patients with moderate to severe AD. Int J Geriatr Psychiatry 27(6):651–656

    Article  PubMed  Google Scholar 

  18. Rainer M, Wuschitz A, Jagsch C, Erb C, Chirikdjian JJ, Mucke HA (2011) Memantine in moderate to severe Alzheimer’s disease: an observational post-marketing study. J Neural Transm 118(8):1255–1259

    Article  CAS  PubMed  Google Scholar 

  19. Cameron HA, McEwen BS, Gould E (1995) Regulation of adult neurogenesis by excitatory input and NMDA receptor activation in the dentate gyrus. J Neurosci 15(6):4687–4692

    CAS  PubMed  Google Scholar 

  20. Hirasawa T, Wada H, Kohsaka S, Uchino S (2003) Inhibition of NMDA receptors induces delayed neuronal maturation and sustained proliferation of progenitor cells during neocortical development. J Neurosci Res 74(5):676–687

    Article  CAS  PubMed  Google Scholar 

  21. Nacher J, Rosell DR, Alonso-Llosa G, McEwen BS (2001) NMDA receptor antagonist treatment induces a long-lasting increase in the number of proliferating cells, PSA-NCAM-immunoreactive granule neurons and radial glia in the adult rat dentate gyrus. Eur J Neurosci 13(3):512–520

    Article  CAS  PubMed  Google Scholar 

  22. Tomita K, Kubo K, Ishii K, Nakajima K (2011) Disrupted-in-Schizophrenia-1 (Disc1) is necessary for migration of the pyramidal neurons during mouse hippocampal development. Hum Mol Genet 20(14):2834–2845

    Article  CAS  PubMed  Google Scholar 

  23. Stranahan AM, Erion JR, Wosiski-Kuhn M (2013) Reelin signaling in development, maintenance, and plasticity of neural networks. Ageing Res Rev 12(3):815–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Borchelt DR, Thinakaran G, Eckman CB, Lee MK, Davenport F, Ratovitsky T, Prada CM, Kim G, Seekins S, Yager D, Slunt HH, Wang R, Seeger M, Levey AI, Gandy SE, Copeland NG, Jenkins NA, Price DL, Younkin SG, Sisodia SS (1996) Familial Alzheimer’s disease-linked presenilin 1 variants elevate Abeta1-42/1-40 ratio in vitro and in vivo. Neuron 17(5):1005–1013

    Article  CAS  PubMed  Google Scholar 

  25. Lee MK, Borchelt DR, Kim G, Thinakaran G, Slunt HH, Ratovitski T, Martin LJ, Kittur A, Gandy S, Levey AI, Jenkins N, Copeland N, Price DL, Sisodia SS (1997) Hyperaccumulation of FAD-linked presenilin 1 variants in vivo. Nat Med 3(7):756–760

    Article  CAS  PubMed  Google Scholar 

  26. Li D, Tang J, Xu H, Fan X, Bai Y, Yang L (2008) Decreased hippocampal cell proliferation correlates with increased expression of BMP4 in the APPswe/PS1DeltaE9 mouse model of Alzheimer’s disease. Hippocampus 18(7):692–698

    Article  CAS  PubMed  Google Scholar 

  27. Li H, Babiarz J, Woodbury J, Kane-Goldsmith N, Grumet M (2004) Spatiotemporal heterogeneity of CNS radial glial cells and their transition to restricted precursors. Dev Biol 271(2):225–238

    Article  CAS  PubMed  Google Scholar 

  28. Patten BA, Sardi SP, Koirala S, Nakafuku M, Corfas G (2006) Notch1 signaling regulates radial glia differentiation through multiple transcriptional mechanisms. J Neurosci 26(12):3102–3108

    Article  CAS  PubMed  Google Scholar 

  29. Faigle R, Song H (2013) Signaling mechanisms regulating adult neural stem cells and neurogenesis. Biochim Biophys Acta 1830(2):2435–2448

    Article  CAS  PubMed  Google Scholar 

  30. Wu HM, Tzeng NS, Qian L, Wei SJ, Hu X, Chen SH, Rawls SM, Flood P, Hong JS, Lu RB (2009) Novel neuroprotective mechanisms of memantine: increase in neurotrophic factor release from astroglia and anti-inflammation by preventing microglial activation. Neuropsychopharmacology 34(10):2344–2357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wu Q, Li Y, Xiao B (2013) DISC1-related signaling pathways in adult neurogenesis of the hippocampus. Gene 518(2):223–230

    Article  CAS  PubMed  Google Scholar 

  32. Mao Y, Ge X, Frank CL, Madison JM, Koehler AN, Doud MK, Tassa C, Berry EM, Soda T, Singh KK, Biechele T, Petryshen TL, Moon RT, Haggarty SJ, Tsai LH (2009) Disrupted in schizophrenia 1 regulates neuronal progenitor proliferation via modulation of GSK3beta/beta-catenin signaling. Cell 136(6):1017–1031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tayeb HO, Yang HD, Price BH, Tarazi FI (2012) Pharmacotherapies for Alzheimer’s disease: beyond cholinesterase inhibitors. Pharmacol Ther 134(1):8–25

    Article  CAS  PubMed  Google Scholar 

  34. Volbracht C, van Beek J, Zhu C, Blomgren K, Leist M (2006) Neuroprotective properties of memantine in different in vitro and in vivo models of excitotoxicity. Eur J Neurosci 23(10):2611–2622

    Article  PubMed  Google Scholar 

  35. Deng W, Aimone JB, Gage FH (2010) New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat Rev Neurosci 11(5):339–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bruel-Jungerman E, Rampon C, Laroche S (2007) Adult hippocampal neurogenesis, synaptic plasticity and memory: facts and hypotheses. Rev Neurosci 18(2):93–114

    Article  CAS  PubMed  Google Scholar 

  37. Jin K, Xie L, Mao XO, Greenberg DA (2006) Alzheimer’s disease drugs promote neurogenesis. Brain Res 1085(1):183–188

    Article  CAS  PubMed  Google Scholar 

  38. Maekawa M, Namba T, Suzuki E, Yuasa S, Kohsaka S, Uchino S (2009) NMDA receptor antagonist memantine promotes cell proliferation and production of mature granule neurons in the adult hippocampus. Neurosci Res 63(4):259–266

    Article  CAS  PubMed  Google Scholar 

  39. Fuster-Matanzo A, Llorens-Martin M, Hernandez F, Avila J (2013) Role of neuroinflammation in adult neurogenesis and Alzheimer disease: therapeutic approaches. Mediat Inflamm 2013:260925

    Article  Google Scholar 

  40. Cai Z, Hussain MD, Yan LJ (2014) Microglia, neuroinflammation, and beta-amyloid protein in Alzheimer’s disease. Int J Neurosci 124(5):307–321

    Article  CAS  PubMed  Google Scholar 

  41. Meraz-Rios MA, Toral-Rios D, Franco-Bocanegra D, Villeda-Hernandez J, Campos-Pena V (2013) Inflammatory process in Alzheimer’s Disease. Front Integr Neurosci 7:59

    Article  PubMed  PubMed Central  Google Scholar 

  42. Solomon B (2006) Alzheimer’s disease immunotherapy: from in vitro amyloid immunomodulation to in vivo vaccination. J Alzheimers Dis 9(3 Suppl):433–438

    Article  CAS  PubMed  Google Scholar 

  43. Wisniewski T, Konietzko U (2008) Amyloid-beta immunisation for Alzheimer’s disease. Lancet Neurol 7(9):805–811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Prokop S, Miller KR, Heppner FL (2013) Microglia actions in Alzheimer’s disease. Acta Neuropathol 126(4):461–477

    Article  CAS  PubMed  Google Scholar 

  45. Kaindl AM, Degos V, Peineau S, Gouadon E, Chhor V, Loron G, Le Charpentier T, Josserand J, Ali C, Vivien D, Collingridge GL, Lombet A, Issa L, Rene F, Loeffler JP, Kavelaars A, Verney C, Mantz J, Gressens P (2012) Activation of microglial N-methyl-D-aspartate receptors triggers inflammation and neuronal cell death in the developing and mature brain. Ann Neurol 72(4):536–549

    Article  CAS  PubMed  Google Scholar 

  46. Biscaro B, Lindvall O, Tesco G, Ekdahl CT, Nitsch RM (2012) Inhibition of microglial activation protects hippocampal neurogenesis and improves cognitive deficits in a transgenic mouse model for Alzheimer’s disease. Neurodegener Dis 9(4):187–198

    Article  CAS  PubMed  Google Scholar 

  47. Harry GJ, Kraft AD (2012) Microglia in the developing brain: a potential target with lifetime effects. Neurotoxicology 33(2):191–206

    Article  PubMed  PubMed Central  Google Scholar 

  48. Xu L, Tang X, Wang Y, Xu H, Fan X (2014) Radial glia, the keystone of the development of the hippocampal dentate gyrus. Mol Neurobiol [Epub ahead of print]

  49. Kim JY, Duan X, Liu CY, Jang MH, Guo JU, Pow-anpongkul N, Kang E, Song H, Ming GL (2009) DISC1 regulates new neuron development in the adult brain via modulation of AKT-mTOR signaling through KIAA1212. Neuron 63(6):761–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhao S, Chai X, Frotscher M (2007) Balance between neurogenesis and gliogenesis in the adult hippocampus: role for reelin. Dev Neurosci 29(1–2):84–90

    CAS  PubMed  Google Scholar 

  51. Malatesta P, Appolloni I, Calzolari F (2008) Radial glia and neural stem cells. Cell Tissue Res 331(1):165–178

    Article  PubMed  Google Scholar 

  52. Li G, Kataoka H, Coughlin SR, Pleasure SJ (2009) Identification of a transient subpial neurogenic zone in the developing dentate gyrus and its regulation by Cxcl12 and reelin signaling. Development 136(2):327–335

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Nature Science Foundation of China (No. 31071299, No. 81371197). The authors thank Dr. Hedong Li of Sichuan University for providing L2.3 cell line.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaotang Fan or Haiwei Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, D., Chen, J., Bao, X. et al. Protection of Radial Glial-Like Cells in the Hippocampus of APP/PS1 Mice: a Novel Mechanism of Memantine in the Treatment of Alzheimer’s Disease. Mol Neurobiol 52, 464–477 (2015). https://doi.org/10.1007/s12035-014-8875-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8875-6

Keywords

Navigation