Skip to main content

Advertisement

Log in

MGARP Regulates Mouse Neocortical Development via Mitochondrial Positioning

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Neocortical development is an extremely complicated process that critically depends on the proper migration, distribution, and positioning of neural cells. Here, we identified mitochondria-localized glutamic acid-rich protein (MGARP) as a negative regulator of neocortical development. In the developing neocortex, the overexpression of MGARP by in utero electroporation impedes the radial migration of neocortical cells to their final destination. These neocortical cells failed to be normally polarized, leading to shortened axons and compromised axonal bundles. The number of dendrites was also attenuated in cells with MGARP overexpression and was expanded in MGARP-knockdown or knockout cells. Mechanistic studies indicated that overexpression of MGARP caused alterations in the structural integrity, subcellular distribution, and motility of mitochondria. The mitochondria in MGARP-overexpressing cells became “fatty” with a round morphology, and the total number of mitochondria in MGARP-overexpressing cells was also decreased in the cell body and dendrites as well as in the axons. Time lapse studies showed that the ratio of motile mitochondria was remarkably decreased in the axons of MGARP-overexpressing cells. Together, our findings suggest that MGARP negatively mediates neocortical development by regulating mitochondrial distribution and motility in neocortical neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Marin O, Rubenstein JL (2003) Cell migration in the forebrain. Annu Rev Neurosci 26:441–483. doi:10.1146/annurev.neuro.26.041002.131058

    Article  CAS  PubMed  Google Scholar 

  2. Lopez-Bendito G, Cautinat A, Sanchez JA, Bielle F, Flames N, Garratt AN, Talmage DA, Role LW, Charnay P, Marin O, Garel S (2006) Tangential neuronal migration controls axon guidance: a role for neuregulin-1 in thalamocortical axon navigation. Cell 125(1):127–142. doi:10.1016/j.cell.2006.01.042

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Cuezva JM, Ostronoff LK, Ricart J, Lopez de Heredia M, Di Liegro CM, Izquierdo JM (1997) Mitochondrial biogenesis in the liver during development and oncogenesis. J Bioenerg Biomembr 29(4):365–377

    Article  CAS  PubMed  Google Scholar 

  4. Chen H, Chan DC (2009) Mitochondrial dynamics—fusion, fission, movement, and mitophagy—in neurodegenerative diseases. Hum Mol Genet 18(R2):R169–R176. doi:10.1093/hmg/ddp326

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Bossy-Wetzel E, Barsoum MJ, Godzik A, Schwarzenbacher R, Lipton SA (2003) Mitochondrial fission in apoptosis, neurodegeneration and aging. Curr Opin Cell Biol 15(6):706–716

    Article  CAS  PubMed  Google Scholar 

  6. van Spronsen M, Mikhaylova M, Lipka J, Schlager MA, van den Heuvel DJ, Kuijpers M, Wulf PS, Keijzer N, Demmers J, Kapitein LC, Jaarsma D, Gerritsen HC, Akhmanova A, Hoogenraad CC (2013) TRAK/Milton motor-adaptor proteins steer mitochondrial trafficking to axons and dendrites. Neuron 77(3):485–502. doi:10.1016/j.neuron.2012.11.027

    Article  PubMed  Google Scholar 

  7. Kang JS, Tian JH, Pan PY, Zald P, Li C, Deng C, Sheng ZH (2008) Docking of axonal mitochondria by syntaphilin controls their mobility and affects short-term facilitation. Cell 132(1):137–148. doi:10.1016/j.cell.2007.11.024

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Chada SR, Hollenbeck PJ (2004) Nerve growth factor signaling regulates motility and docking of axonal mitochondria. Curr Biol 14(14):1272–1276. doi:10.1016/j.cub.2004.07.027

    Article  CAS  PubMed  Google Scholar 

  9. Delettre C, Lenaers G, Griffoin JM, Gigarel N, Lorenzo C, Belenguer P, Pelloquin L, Grosgeorge J, Turc-Carel C, Perret E, Astarie-Dequeker C, Lasquellec L, Arnaud B, Ducommun B, Kaplan J, Hamel CP (2000) Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat Genet 26(2):207–210. doi:10.1038/79936

    Article  CAS  PubMed  Google Scholar 

  10. Alexander C, Votruba M, Pesch UE, Thiselton DL, Mayer S, Moore A, Rodriguez M, Kellner U, Leo-Kottler B, Auburger G, Bhattacharya SS, Wissinger B (2000) OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat Genet 26(2):211–215. doi:10.1038/79944

    Article  CAS  PubMed  Google Scholar 

  11. Zuchner S, Mersiyanova IV, Muglia M, Bissar-Tadmouri N, Rochelle J, Dadali EL, Zappia M, Nelis E, Patitucci A, Senderek J, Parman Y, Evgrafov O, Jonghe PD, Takahashi Y, Tsuji S, Pericak-Vance MA, Quattrone A, Battaloglu E, Polyakov AV, Timmerman V, Schroder JM, Vance JM (2004) Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot–Marie–Tooth neuropathy type 2A. Nat Genet 36(5):449–451. doi:10.1038/ng1341

    Article  PubMed  Google Scholar 

  12. Hennebold JD, Tanaka M, Saito J, Hanson BR, Adashi EY (2000) Ovary-selective genes I: the generation and characterization of an ovary-selective complementary deoxyribonucleic acid library. Endocrinology 141(8):2725–2734

    CAS  PubMed  Google Scholar 

  13. Sakai R, Kinouchi T, Kawamoto S, Dana MR, Hamamoto T, Tsuru T, Okubo K, Yamagami S (2002) Construction of human corneal endothelial cDNA library and identification of novel active genes. Investig Ophthalmol Vis Sci 43(6):1749–1756

    Google Scholar 

  14. Matsumoto T, Minegishi K, Ishimoto H, Tanaka M, Hennebold JD, Teranishi T, Hattori Y, Furuya M, Higuchi T, Asai S, Kim SH, Miyakoshi K, Yoshimura Y (2009) Expression of ovary-specific acidic protein in steroidogenic tissues: a possible role in steroidogenesis. Endocrinology 150(7):3353–3359. doi:10.1210/en.2008-1584

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Qi S, Wang Y, Zhou M, Ge Y, Yan Y, Wang J, Zhang SS, Zhang S (2010) A mitochondria-localized glutamic acid-rich protein (MGARP/OSAP) is highly expressed in retina that exhibits a large area of intrinsic disorder. Mol Biol Rep 38(5):2869–2877. doi:10.1007/s11033-010-9948-x

    Article  PubMed  Google Scholar 

  16. Bailey MJ, Coon SL, Carter DA, Humphries A, Kim JS, Shi Q, Gaildrat P, Morin F, Ganguly S, Hogenesch JB, Weller JL, Rath MF, Moller M, Baler R, Sugden D, Rangel ZG, Munson PJ, Klein DC (2009) Night/day changes in pineal expression of >600 genes: central role of adrenergic/cAMP signaling. J Biol Chem 284(12):7606–7622. doi:10.1074/jbc.M808394200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Kinouchi R, Kinouchi T, Hamamoto T, Saito T, Tavares A, Tsuru T, Yamagami S (2006) Distribution of CESP-1 protein in the corneal endothelium and other tissues. Investig Ophthalmol Vis Sci 47(4):1397–1403. doi:10.1167/iovs.05-0602

    Article  Google Scholar 

  18. Zhou M, Wang Y, Qi S, Wang J, Zhang S (2011) The expression of a mitochondria-localized glutamic acid-rich protein (MGARP/OSAP) is under the regulation of the HPG axis. Endocrinology 152(6):2311–2320. doi:10.1210/en.2011-0050

    Article  CAS  PubMed  Google Scholar 

  19. Li Y, Lim S, Hoffman D, Aspenstrom P, Federoff HJ, Rempe DA (2009) HUMMR, a hypoxia- and HIF-1alpha-inducible protein, alters mitochondrial distribution and transport. J Cell Biol 185(6):1065–1081. doi:10.1083/jcb.200811033

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Saito T, Nakatsuji N (2001) Efficient gene transfer into the embryonic mouse brain using in vivo electroporation. Dev Biol 240(1):237–246. doi:10.1006/dbio.2001.0439

    Article  CAS  PubMed  Google Scholar 

  21. Saito T (2006) In vivo electroporation in the embryonic mouse central nervous system. Nat Protoc 1(3):1552–1558. doi:10.1038/nprot.2006.276

    Article  CAS  PubMed  Google Scholar 

  22. Pang T, Atefy R, Sheen V (2008) Malformations of cortical development. Neurologist 14(3):181–191. doi:10.1097/NRL.0b013e31816606b9

    Article  PubMed Central  PubMed  Google Scholar 

  23. Crino PB (2009) Focal brain malformations: seizures, signaling, sequencing. Epilepsia 50(Suppl 9):3–8. doi:10.1111/j.1528-1167.2009.02289.x

    Article  CAS  PubMed  Google Scholar 

  24. Squier W, Jansen A (2010) Abnormal development of the human cerebral cortex. J Anat 217(4):312–323. doi:10.1111/j.1469-7580.2010.01288.x

    Article  PubMed Central  PubMed  Google Scholar 

  25. Mochida GH (2009) Genetics and biology of microcephaly and lissencephaly. Semin Pediatr Neurol 16(3):120–126. doi:10.1016/j.spen.2009.07.001

    Article  PubMed Central  PubMed  Google Scholar 

  26. Metin C, Denizot JP, Ropert N (2000) Intermediate zone cells express calcium-permeable AMPA receptors and establish close contact with growing axons. J Neurosci 20(2):696–708

    CAS  PubMed  Google Scholar 

  27. Altman J, Bayer SA (1990) Horizontal compartmentation in the germinal matrices and intermediate zone of the embryonic rat cerebral cortex. Exp Neurol 107(1):36–47

    Article  CAS  PubMed  Google Scholar 

  28. Courchesne E, Pierce K (2005) Brain overgrowth in autism during a critical time in development: implications for frontal pyramidal neuron and interneuron development and connectivity. Int J Dev Neurosci 23(2-3):153–170. doi:10.1016/j.ijdevneu.2005.01.003

    Article  PubMed  Google Scholar 

  29. Lapray D, Popova IY, Kindler J, Jorquera I, Becq H, Manent JB, Luhmann HJ, Represa A (2010) Spontaneous epileptic manifestations in a DCX knockdown model of human double cortex. Cereb Cortex 20(11):2694–2701. doi:10.1093/cercor/bhq014

    Google Scholar 

  30. Ackman JB, Aniksztejn L, Crepel V, Becq H, Pellegrino C, Cardoso C, Ben-Ari Y, Represa A (2009) Abnormal network activity in a targeted genetic model of human double cortex. J Neurosci 29(2):313–327. doi:10.1523/JNEUROSCI.4093-08.2009

    Article  CAS  PubMed  Google Scholar 

  31. Fiskum G, Murphy AN, Beal MF (1999) Mitochondria in neurodegeneration: acute ischemia and chronic neurodegenerative diseases. J Cereb Blood Flow Metab 19(4):351–369. doi:10.1097/00004647-199904000-00001

    Article  CAS  PubMed  Google Scholar 

  32. Orth M, Schapira AH (2001) Mitochondria and degenerative disorders. Am J Med Genet 106(1):27–36. doi:10.1002/ajmg.1425

    Article  CAS  PubMed  Google Scholar 

  33. Li Z, Okamoto K, Hayashi Y, Sheng M (2004) The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell 119(6):873–887. doi:10.1016/j.cell.2004.11.003

    Article  CAS  PubMed  Google Scholar 

  34. Chan DC (2006) Mitochondria: dynamic organelles in disease, aging, and development. Cell 125(7):1241–1252. doi:10.1016/j.cell.2006.06.010

    Article  CAS  PubMed  Google Scholar 

  35. Mattson MP, Gleichmann M, Cheng A (2008) Mitochondria in neuroplasticity and neurological disorders. Neuron 60(5):748–766. doi:10.1016/j.neuron.2008.10.010

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Youle RJ, van der Bliek AM (2012) Mitochondrial fission, fusion, and stress. Science 337(6098):1062–1065. doi:10.1126/science.1219855

    Article  CAS  PubMed  Google Scholar 

  37. Yaffe MP (1999) The machinery of mitochondrial inheritance and behavior. Science 283(5407):1493–1497

    Article  CAS  PubMed  Google Scholar 

  38. Kanki T, Klionsky DJ (2010) The molecular mechanism of mitochondria autophagy in yeast. Mol Microbiol 75(4):795–800. doi:10.1111/j.1365-2958.2009.07035.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Gomes LC, Scorrano L (2013) Mitochondrial morphology in mitophagy and macroautophagy. Biochim Biophys Acta 1833(1):205–212. doi:10.1016/j.bbamcr.2012.02.012

    Article  CAS  PubMed  Google Scholar 

  40. Zhu Y, Massen S, Terenzio M, Lang V, Chen-Lindner S, Eils R, Novak I, Dikic I, Hamacher-Brady A, Brady NR (2013) Modulation of serines 17 and 24 in the LC3-interacting region of Bnip3 determines pro-survival mitophagy versus apoptosis. J Biol Chem 288(2):1099–1113. doi:10.1074/jbc.M112.399345

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Brookes PS, Yoon Y, Robotham JL, Anders MW, Sheu SS (2004) Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol 287(4):C817–C833. doi:10.1152/ajpcell.00139.2004

    Article  CAS  PubMed  Google Scholar 

  42. Miller WL (2013) Steroid hormone synthesis in mitochondria. Mol Cell Endocrinol. doi: 10.1016/j.mce.2013.04.014

  43. Papadopoulos V, Nowzari FB, Krueger KE (1991) Hormone-stimulated steroidogenesis is coupled to mitochondrial benzodiazepine receptors.Tropic hormone action on steroid biosynthesis is inhibited by flunitrazepam. J Biol Chem 266(6):3682–3687

    CAS  PubMed  Google Scholar 

  44. Brown GR, Spencer KA (2013) Steroid hormones, stress and the adolescent brain: a comparative perspective. Neuroscience 249:115–128. doi:10.1016/j.neuroscience.2012.12.016

    Article  CAS  PubMed  Google Scholar 

  45. Scott EL, Brann DW (2013) Estrogen regulation of Dkk1 and Wnt/beta-Catenin signaling in neurodegenerative disease. Brain Res 1514:63–74. doi:10.1016/j.brainres.2012.12.015

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Kucherenko MM, Barth J, Fiala A, Shcherbata HR (2012) Steroid-induced microRNA let-7 acts as a spatio-temporal code for neuronal cell fate in the developing Drosophila brain. EMBO J 31(24):4511–4523. doi:10.1038/emboj.2012.298

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Kendrick KM, Drewett RF (1980) Testosterone-sensitive neurones respond to oestradiol but not to dihydrotestosterone. Nature 286(5768):67–68

    Article  CAS  PubMed  Google Scholar 

  48. Loy R, Milner TA (1980) Sexual dimorphism in extent of axonal sprouting in rat hippocampus. Science 208(4449):1282–1284

    Article  CAS  PubMed  Google Scholar 

  49. Behl C (2002) Estrogen can protect neurons: modes of action. J Steroid Biochem Mol Biol 83(1–5):195–197

    Article  CAS  PubMed  Google Scholar 

  50. Behl C (2002) Oestrogen as a neuroprotective hormone. Nat Rev Neurosci 3(6):433–442. doi:10.1038/nrn846

    CAS  PubMed  Google Scholar 

  51. Zechel JL, Gamboa JL, Peterson AG, Puchowicz MA, Selman WR, Lust WD (2005) Neuronal migration is transiently delayed by prenatal exposure to intermittent hypoxia. Birth Def Res B Dev Reprod Toxicol 74(4):287–299. doi:10.1002/bdrb.20051

    Article  CAS  Google Scholar 

  52. Golan MH, Mane R, Molczadzki G, Zuckerman M, Kaplan-Louson V, Huleihel M, Perez-Polo JR (2009) Impaired migration signaling in the hippocampus following prenatal hypoxia. Neuropharmacology 57(5–6):511–522. doi:10.1016/j.neuropharm.2009.07.028

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (No. 81171063) and the Ministry of Agriculture of China (2011ZX08009). We sincerely thank Prof. Guo-li Ming (Department of Neurology, Johns Hopkins University School of Medicine, USA) for constructive suggestions and reviewing our manuscript. We also appreciate the hard work of Prof. Shaoyong Chen (Beth Israel Deaconess Medical Center, Harvard Medical School, USA) for reading our manuscript and Prof. Xiaobing Yuan for technical instruction. We are grateful to all the professors who kindly provided us the constructs and Dr. Lei Huang (Center for Biomedical Analysis, Tsinghua University) for some help with the calculation.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuping Zhang.

Additional information

Liyun Jia and Tong Liang contributed equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary video 1

Dynamics of mitochondria in the control vector-transfected axon (AVI 15621 kb)

Supplementary video 2

Dynamics of mitochondria in the MGARP-overexpression vector-transfected axon (AVI 15621 kb)

Supplementary video 3

Dynamics of mitochondria in the control vector-transfected cell body (AVI 15621 kb)

Supplementary video 4

Dynamics of mitochondria in the MGARP-overexpression vector-transfected cell body (AVI 15621 kb)

Supplementary video 5

Dynamics of mitochondria in the scramble vector-transfected axon (AVI 15621 kb)

Supplementary video 6

Dynamics of mitochondria in the MGARP shRNA vector-transfected axon (AVI 15621 kb)

Supplementary video 7

Dynamics of mitochondria in the scramble vector-transfected cell body (AVI 15621 kb)

Supplementary video 8

Dynamics of mitochondria in the MGARP shRNA vector-transfected cell body (AVI 15621 kb)

ESM 9

(DOC 1.75 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jia, L., Liang, T., Yu, X. et al. MGARP Regulates Mouse Neocortical Development via Mitochondrial Positioning. Mol Neurobiol 49, 1293–1308 (2014). https://doi.org/10.1007/s12035-013-8602-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-013-8602-8

Keywords

Navigation