Skip to main content
Log in

Gliomas with Downregulation of lncRNA SLC25A21-AS1 Carry a Dismal Prognosis and an Accelerated Progression in Cell Proliferation, Migration and Invasion

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Glioma is one type of primary intracranial carcinoma with a relatively poor prognosis. We investigated the level of SLC25A21-AS1 in gliomas and the association with survival and progression in patients with glioma. Specimens of gliomas from patients were assessed by quantitative real-time polymerase chain reaction analysis of the SLC25A21-AS1 level (117 specimens). For prognostic value assessment, χ2 test, Kaplan–Meier method with the log-rank test, and Multivariate survival analysis were performed. The direct targets for SLC25A21-AS1 were explored. The biological roles of SLC25A21-AS1 were investigated by manipulating the expression level of SLC25A21-AS1 in glioma cells. SLC25A21-AS1 was significantly downregulated in glioma specimens and cell lines compared to non-cancerous ones. Significant associations were found between SLC25A21-AS1 downregulation and WHO stage, IDH status, poor disease-free survival/overall survival. miR-221-3p/miR-222-3p were the target miRNAs for SLC25A21-AS1. Overexpression of SLC25A21-AS1 inhibited glioma cell growth, invasion, and migration while miR-221-3p/miR-222-3p-overexpressed groups could offset this effect. Downregulation of SLC25A21-AS1 in gliomas carries a universally poor prognosis. Overexpression of SLC25A21-AS1 inhibited glioma progression via miR-221-3p/miR-222-3p.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Davis, M. E. (2018). Epidemiology and overview of gliomas. Seminars in Oncology Nursing., 34(5), 420–429.

    Article  Google Scholar 

  2. Shinojima, N. (2021). Epidemiology for glioma. No shinkei geka Neurological Surgery, 49(3), 491–499.

    PubMed  Google Scholar 

  3. Mandal, A. S., Romero-Garcia, R., Hart, M. G., & Suckling, J. (2020). Genetic, cellular, and connectomic characterization of the brain regions commonly plagued by glioma. Brain: A Journal of Neurology, 143(11), 3294–3307.

    Article  Google Scholar 

  4. Perry, A., & Wesseling, P. (2016). Histologic classification of gliomas. Handbook of Clinical Neurology, 134, 71–95.

    Article  Google Scholar 

  5. Mackintosh, C., Butterfield, R., Zhang, N., Lorence, J., Zlomanczuk, P., Bendok, B. R., et al. (2020). Does location matter? Characterisation of the anatomic locations, molecular profiles, and clinical features of gliomas. Neurologia i neurochirurgia polska, 54(5), 456–465.

    Article  Google Scholar 

  6. Le Rhun, E., & Weller, M. (2020). Sex-specific aspects of epidemiology, molecular genetics and outcome: primary brain tumours. ESMO Open, 5(Suppl 4), e001034.

    Article  Google Scholar 

  7. Delgado-López, P. D., & Corrales-García, E. M. (2016). Survival in glioblastoma: A review on the impact of treatment modalities. Clinical & Translational Oncology: Official Publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico, 18(11), 1062–1071.

    Article  Google Scholar 

  8. Niu, X., Wang, T., Zhou, X., Yang, Y., Wang, X., Zhang, H., et al. (2020). Surgical treatment and survival outcome of patients with adult thalamic glioma: A single institution experience of 8 years. Journal of Neuro-oncology, 147(2), 377–386.

    Article  CAS  Google Scholar 

  9. Felker, J., & Broniscer, A. (2020). Improving long-term survival in diffuse intrinsic pontine glioma. Expert Review of Neurotherapeutics, 20(7), 647–658.

    Article  CAS  Google Scholar 

  10. Reifenberger, G., Wirsching, H. G., Knobbe-Thomsen, C. B., & Weller, M. (2017). Advances in the molecular genetics of gliomas—implications for classification and therapy. Nature Reviews Clinical Oncology, 14(7), 434–452.

    Article  CAS  Google Scholar 

  11. Meng, X., Zhao, Y., Han, B., Zha, C., Zhang, Y., Li, Z., et al. (2020). Dual functionalized brain-targeting nanoinhibitors restrain temozolomide-resistant glioma via attenuating EGFR and MET signaling pathways. Nature Communications, 11(1), 594.

    Article  CAS  Google Scholar 

  12. Slack, F. J., & Chinnaiyan, A. M. (2019). The role of non-coding RNAs in oncology. Cell, 179(5), 1033–1055.

    Article  CAS  Google Scholar 

  13. Yang, X., Liu, M., Li, M., Zhang, S., Hiju, H., Sun, J., et al. (2020). Epigenetic modulations of noncoding RNA: A novel dimension of cancer biology. Molecular Cancer, 19(1), 64.

    Article  Google Scholar 

  14. Silva, A., Bullock, M., & Calin, G. (2015). The clinical relevance of long non-coding RNAs in cancer. Cancers, 7(4), 2169–2182.

    Article  CAS  Google Scholar 

  15. Feng, Y., Wu, M., Hu, S., Peng, X., & Chen, F. (2020). LncRNA DDX11-AS1: A novel oncogene in human cancer. Human Cell, 33(4), 946–953.

    Article  CAS  Google Scholar 

  16. Chan, J. J., & Tay, Y. (2018). Noncoding RNA:RNA regulatory networks in cancer. International Journal of Molecular Sciences, 19(5), 1310.

    Article  Google Scholar 

  17. Wu, P., Cai, J., Chen, Q., Han, B., Meng, X., Li, Y., et al. (2019). Lnc-TALC promotes O(6)-methylguanine-DNA methyltransferase expression via regulating the c-Met pathway by competitively binding with miR-20b-3p. Nature Communications, 10(1), 2045.

    Article  Google Scholar 

  18. Liu, Y., Wang, D., Ji, Q., & Yan, J. (2022). LncRNA MATN1-AS1 for prediction of prognosis in osteosarcoma patients and its cellular function. Molecular Biotechnology, 64(1), 66–74.

  19. Tao, C., Luo, H., Chen, L., Li, J., Zhu, X., & Huang, K. (2021). Identification of an epithelial-mesenchymal transition related long non-coding RNA (LncRNA) signature in Glioma. Bioengineered, 12(1), 4016–4031.

    Article  CAS  Google Scholar 

  20. Zheng, J., Zhou, Z., Qiu, Y., Wang, M., Yu, H., Wu, Z., et al. (2021). A prognostic ferroptosis-related lncRNAs signature associated with immune landscape and radiotherapy response in glioma. Frontiers in Cell and Developmental Biology, 9, 675555.

    Article  Google Scholar 

  21. Louis, D. N., Perry, A., Reifenberger, G., von Deimling, A., Figarella-Branger, D., Cavenee, W. K., et al. (2016). The 2016 World Health Organization classification of tumors of the central nervous system: A summary. Acta Neuropathologica, 131(6), 803–820.

    Article  Google Scholar 

  22. Xi, J., Sun, Q., Ma, L., & Kang, J. (2018). Long non-coding RNAs in glioma progression. Cancer Letters, 419, 203–209.

    Article  CAS  Google Scholar 

  23. Sasa, G. B. K, Xuan, C., Lyu, G., Ding, X., Meiyu, F. (2022). Long Non-coding RNA ZFPM2-AS1: A novel biomarker in the pathogenesis of human cancers. Molecular Biotechnology.

  24. Torres-Bayona, S., Aldaz, P., Auzmendi-Iriarte, J., Saenz-Antoñanzas, A., Garcia, I., Arrazola, M., et al. (2018). PR-LncRNA signature regulates glioma cell activity through expression of SOX factors. Scientific Reports, 8(1), 12746.

    Article  Google Scholar 

  25. Gong, X., Liao, X., & Huang, M. (2019). LncRNA CASC7 inhibits the progression of glioma via regulating Wnt/β-catenin signaling pathway. Pathology, Research and Practice, 215(3), 564–570.

    Article  CAS  Google Scholar 

  26. Liu, H., Li, C., Yang, J., Sun, Y., Zhang, S., Yang, J., et al. (2018). Long noncoding RNA CASC9/miR-519d/STAT3 positive feedback loop facilitate the glioma tumourigenesis. Journal of Cellular and Molecular Medicine, 22(12), 6338–6344.

    Article  CAS  Google Scholar 

  27. Wang, S. J., Wang, H., Zhao, C. D., & Li, R. (2018). Long noncoding RNA LINC01426 promotes glioma progression through PI3K/AKT signaling pathway and serves as a prognostic biomarker. European Review for Medical and Pharmacological Sciences, 22(19), 6358–6368.

    PubMed  Google Scholar 

  28. Zheng, Y., Lu, S., Xu, Y., & Zheng, J. (2019). Long non-coding RNA AGAP2-AS1 promotes the proliferation of glioma cells by sponging miR-15a/b-5p to upregulate the expression of HDGF and activating Wnt/β-catenin signaling pathway. International Journal of Biological Macromolecules, 128, 521–530.

    Article  CAS  Google Scholar 

  29. Taniue, K., & Akimitsu, N. (2021). The functions and unique features of LncRNAs in cancer development and tumorigenesis. International Journal of Molecular Sciences., 22(2), 632.

    Article  CAS  Google Scholar 

  30. Li, J., Liang, R., Song, C., Xiang, Y., & Liu, Y. (2020). Prognostic and clinicopathological significance of long non-coding RNA in glioma. Neurosurgical Review, 43(1), 1–8.

    Article  Google Scholar 

  31. Li, Q., Wu, Q., Li, Z., Hu, Y., Zhou, F., Zhai, Z., et al. (2019). LncRNA LINC00319 is associated with tumorigenesis and poor prognosis in glioma. European Journal of Pharmacology., 861, 172556.

    Article  CAS  Google Scholar 

  32. Shang, F., Du, S. W., & Ma, X. L. (2019). Up-regulation of lncRNA PXN-AS1-L is associated with unfavorable prognosis in patients suffering from glioma. European Review for Medical and Pharmacological Sciences, 23(20), 8950–8955.

    CAS  PubMed  Google Scholar 

  33. Wang, X., Wang, C., Xu, H., & Xie, H. (2020). Long non-coding RNA SLC25A21-AS1 promotes multidrug resistance in nasopharyngeal carcinoma by regulating miR-324-3p/IL-6 axis. Cancer Management and Research, 12, 3949–3957.

    Article  CAS  Google Scholar 

  34. Liang, Q., Li, X., Guan, G., Xu, X., Chen, C., Cheng, P., et al. (2019). Long non-coding RNA, HOTAIRM1, promotes glioma malignancy by forming a ceRNA network. Aging, 11(17), 6805–6838.

    Article  CAS  Google Scholar 

  35. Dang, Y., Wei, X., Xue, L., Wen, F., Gu, J., & Zheng, H. (2018). Long non-coding RNA in glioma: Target miRNA and signaling pathways. Clinical Laboratory, 64(6), 887–894.

    CAS  PubMed  Google Scholar 

  36. Sun, Y., Zhang, L., Wu, Q., Xu, C., Wang, P. (2022). Long noncoding RNA CRNDE functions as an oncogene to facilitate aggressive behaviors of nasopharyngeal carcinoma cells by modulating miR-3163/TWIST1 axis. Molecular Biotechnology, 64(4), 463–471.

  37. Yang, F., Wang, W., Zhou, C., Xi, W., Yuan, L., Chen, X., et al. (2015). MiR-221/222 promote human glioma cell invasion and angiogenesis by targeting TIMP2. Tumour Biology: The Journal of the International Society for Oncodevelopmental Biology and Medicine, 36(5), 3763–3773.

    Article  CAS  Google Scholar 

  38. Xin, S., Huang, K., & Zhu, X. G. (2019). Non-coding RNAs: Regulators of glioma cell epithelial-mesenchymal transformation. Pathology, Research and Practice, 215(9), 152539.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Zhang.

Ethics declarations

Ethical approval

This study was approved by the Ethics Committee of the First Affiliated Hospital of Xiamen University.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Consent to publish

Patients signed informed consent regarding publishing their data.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, M., Li, K. & Zhang, J. Gliomas with Downregulation of lncRNA SLC25A21-AS1 Carry a Dismal Prognosis and an Accelerated Progression in Cell Proliferation, Migration and Invasion. Mol Biotechnol 64, 936–944 (2022). https://doi.org/10.1007/s12033-022-00472-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-022-00472-6

Keywords

Navigation