Skip to main content

Advertisement

Log in

Ribosome Display: A Potent Display Technology used for Selecting and Evolving Specific Binders with Desired Properties

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Ribosome display is a powerful engineering research tool for the high-throughput selection of peptides or proteins, which results in the generation of high-performance binders against nearly any antigen of interest. As a cell-free display system, ribosome display has been well developed with many outstanding achievements for over 20 years. Compared with other related display techniques, ribosome display shows unique advantages and development prospects. This tool has been successfully exploited for the selection of functional and specific binders in vitro. This review provides a comprehensive survey of the applications of ribosome display in screening or evolving functional proteins as well as in diagnostics and therapeutics. Previous papers on ribosome display failed to comprehensively review evolutionary strategies for proteins. In the present paper, we review all existing evolutionary strategies that have been combined with ribosome display. We also discuss shortcomings, improvement strategies, and research tendency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

E. coli :

Escherichia coli

scFv:

Single-chain variable fragment

SPR:

Surface plasmon resonance

RFs:

Release factors

RRFs:

Ribosome recycling factors

Cκ:

Constant region of Igκ chain

CH:

Heavy chain constant domain

PCR:

Polymerase chain reaction

RT-PCR:

Reverse transcription-polymerase chain reaction

VHH:

Variable region of a heavy chain antibody

PM:

Parsimonious mutagenesis

RAGE:

Receptor for advanced glycation end products

DARPins:

Designed ankyrin repeat proteins

StEP:

Staggered extension process

IAA:

Indoleacetic acid

PrP:

Prion protein

BSA:

Bovine serum albumin

T-NHL:

T-cell non-Hodgkin lymphoma

DTT:

Dithiothreitol

HCV:

Hepatitis C virus

HCVcc:

HCV cell culture

PURE:

Protein synthesis using recombinant elements

ECD:

Extracellular domain

Her2:

Human epidermal growth factor receptor 2

K D :

Equilibrium dissociation constants

VH:

Heavy chain variable domain

K:

The complete constant region of the mouse κ light chain

pM:

Picomolar

References

  1. Farajnia, S., Ahmadzadeh, V., Tanomand, A., Veisi, K., Khosroshahi, S. A., & Rahbarnia, L. (2014). Development trends for generation of single-chain antibody fragments. Immunopharmacology and Immunotoxicology, 36, 297–308.

    Article  CAS  PubMed  Google Scholar 

  2. McCafferty, J., & Schofield, D. (2015). Identification of optimal protein binders through the use of large genetically encoded display libraries. Current Opinion in Chemical Biology, 26, 16–24.

    Article  CAS  PubMed  Google Scholar 

  3. Low, N. M., Holliger, P. H., & Winter, G. (1996). Mimicking somatic hypermutation: affinity maturation of antibodies displayed on bacteriophage using a bacterial mutator strain. Journal of Molecular Biology, 260, 359–368.

    Article  CAS  PubMed  Google Scholar 

  4. Li, M., Fan, X., Liu, J., Hu, Y., & Huang, H. (2015). Selection by phage display of nanobodies directed against hypoxia inducible factor-1alpha (HIF-1alpha). Biotechnology and Applied Biochemistry, 62, 738–745.

    Article  CAS  PubMed  Google Scholar 

  5. Mattheakis, L. C., Bhatt, R. R., & Dower, W. J. (1994). An in vitro polysome display system for identifying ligands from very large peptide libraries. Proceedings of the National Academy of Sciences of the United States of America, 91, 9022–9026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Douthwaite, J. A., & Jackson, R. H. (2012) Ribosome display and related technologies. New York: Humana Press.

    Book  Google Scholar 

  7. Shang, G., Feng, D., Lu, F., Zhang, H., Cang, H., Gao, W., & Bi, R. (2014). Purification, crystallization and preliminary crystallographic analysis of a ribosome-recycling factor from Thermoanaerobacter tengcongensis (TteRRF). Acta Crystallographica F, 70, 588–591.

    Article  CAS  Google Scholar 

  8. He, M., & Taussig, M. J. (2002) Ribosome display: Cell-free protein display technology. Briefings in Functional Genomics & Proteomics, 1, 204–212.

    Article  CAS  Google Scholar 

  9. Hanes, J., & Plückthun, A. (1997). In vitro Selection and Evolution of Functional Proteins by Using Ribosome Display. Proceedings of the National Academy of Sciences of the United States of America, 94, 4937–4942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhao, X.-L., Chen, W.-Q., Yang, Z.-H., Li, J.-M., Zhang, S.-J., & Tian, L.-F. (2009). Selection and affinity maturation of human antibodies against rabies virus from a scFv gene library using ribosome display. Journal of Biotechnology, 144, 253–258.

    Article  CAS  PubMed  Google Scholar 

  11. Bencurova, E., Pulzova, L., Flachbartova, Z., & Bhide, M. (2015). A rapid and simple pipeline for synthesis of mRNA-ribosome-VHH complexes used in single-domain antibody ribosome display. Molecular Biosystems, 11, 1515–1524.

    Article  CAS  PubMed  Google Scholar 

  12. Pacheco, S., Canton, E., Zuniga-Navarrete, F., Pecorari, F., Bravo, A., & Soberon, M. (2015). Improvement and efficient display of Bacillus thuringiensis toxins on M13 phages and ribosomes. AMB Express., 5, 73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Manandhar, Y., Wang, W., Inoue, J., Hayashi, N., Uzawa, T., Ito, Y., Aigaki, T., & Ito, Y. (2017). Interactions of in vitro selected fluorogenic peptide aptamers with calmodulin. Biotechnology Letter, 39, 375–382.

    Article  CAS  Google Scholar 

  14. Hanes, J., Jermutus, L., Schaffitzel, C., & Plückthun, A. (1999). Comparison of Escherichia coli and rabbit reticulocyte ribosome display systems. FEBS Letters, 450, 105–110.

    Article  CAS  PubMed  Google Scholar 

  15. Zahnd, C., Amstutz, P., & Pluckthün, A. (2007). Ribosome display: Selecting and evolving proteins in vitro that specifically bind to a target. Nature Methods, 4, 269–279.

    Article  CAS  PubMed  Google Scholar 

  16. Pardon, E., Laeremans, T., Triest, S., Rasmussen, S. G. F., Wohlkönig, A., Ruf, A., Muyldermans, S., Hol, W. G. J., Kobilka, B. K., & Steyaert, J. (2014). A general protocol for the generation of nanobodies for structural biology. Nature Protocols, 9, 674–693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zadravec, P., Mareckova, L., Petrokova, H., Hodnik, V., Perisic Nanut, M., Anderluh, G., Strukelj, B., Maly, P., & Berlec, A. (2016). Development of recombinant lactococcus lactis displaying albumin-binding domain variants against shiga toxin 1 B subunit. PLoS ONE, 11, e0162625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhao, X. L., Tian, L. F., Zhang, S. J., Li, J. M., Feng, H., Wang, L. M., Wang, S., Wang, J., Wang, T., & Chen, W. Q. (2016). Novel human three-domain antibody fragments against sTNF alpha as well as tmTNF alpha with high affinity generated by the combination of ribosome display and E. coli expression system. Scandinavian Journal of Immunology, 83, 267–278.

    Article  CAS  PubMed  Google Scholar 

  19. Pan, Y., Mao, W., Liu, X., Xu, C., He, Z., Wang, W., & Yan, H. (2012). Selection of single chain variable fragments specific for the human-inducible costimulator using ribosome display. Applied Biochemistry and Biotechnology, 168, 967–979.

    Article  CAS  PubMed  Google Scholar 

  20. Ahangarzadeh, S., Bandehpour, M., & Kazemi, B. (2017). Selection of single-chain variable fragments specific for Mycobacterium tuberculosis ESAT-6 antigen using ribosome display. Iranian Journal of Basic Medical Sciences, 20, 327–333.

    PubMed  PubMed Central  Google Scholar 

  21. He, M., & Taussig, M. J. (1997). Antibody-ribosome-mRNA (ARM) complexes as efficient selection particles for in vitro display and evolution of antibody combining sites. Nucleic Acids Research, 25, 5132–5134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gan, R., & Jewett, M. C. (2016). Evolution of translation initiation sequences using in vitro yeast ribosome display. Biotechnology and Bioengineering, 113, 1777–1786.

    Article  CAS  PubMed  Google Scholar 

  23. Douthwaite, J. A., Groves, M. A., Dufner, P., & Jermutus, L. (2006). An improved method for an efficient and easily accessible eukaryotic ribosome display technology. Protein Engineering Design & Selection Peds, 19, 85–90.

    Article  CAS  Google Scholar 

  24. Veggiani, G., Ossolengo, G., Aliprandi, M., Cavallaro, U., & De, M. A. (2011) Single-domain antibodies that compete with the natural ligand fibroblast growth factor block the internalization of the fibroblast growth factor receptor 1. Biochemical & Biophysical Research Communications, 408, 692–696.

    Article  CAS  Google Scholar 

  25. Murray, C. J., & Baliga, R. (2013). Cell-free translation of peptides and proteins: from high throughput screening to clinical production. Current Opinion in Chemical Biology, 17, 420–426.

    Article  CAS  PubMed  Google Scholar 

  26. Blondel, M., Soubigou, F., Evrard, J., Nguyen, P. H., Hasin, N., Chedin, S., Gillet, R., Contesse, M. A., Friocourt, G., Stahl, G., Jones, G. W., & Voisset, C. (2016). Protein folding activity of the ribosome is involved in yeast prion propagation. Science Report, 6, 32117.

    Article  CAS  Google Scholar 

  27. Forster, A. C., Cornish, V. W., & Blacklow, S. C. (2004). Pure translation display. Analytical Biochemistry, 333, 358–364.

    Article  CAS  PubMed  Google Scholar 

  28. Chong, S. (2014) Overview of cell-free protein synthesis: historic landmarks, commercial systems, and expanding applications. Current Protocols in Molecular Biology, 108, 16.30.1–16.30.11.

    Google Scholar 

  29. Cong, C., Yu, X., He, Y. Z., Dai, Y. J., Zhang, Y. X., Wang, M. R., & He, M. Y. (2016). Cell-free ribosome display and selection of antibodies on arrayed antigens. Proteomics, 16, 1291–1296.

    Article  CAS  PubMed  Google Scholar 

  30. Lipovsek, D., & Plückthun, A. (2004). In-vitro protein evolution by ribosome display and mRNA display. Journal of Immunological Methods, 290, 51–67.

    Article  CAS  PubMed  Google Scholar 

  31. Kim, J. M., Shin, H. J., Kim, K., & Lee, M. S. (2007). A pseudoknot improves selection efficiency in ribosome display. Molecular Biotechnology, 36, 32–37.

    Article  CAS  PubMed  Google Scholar 

  32. Yau, K. Y., Dubuc, G., Li, S., Hirama, T., Mackenzie, C. R., Jermutus, L., Hall, J. C., & Tanha, J. (2005). Affinity maturation of a V(H)H by mutational hotspot randomization. Journal of Immunological Methods, 297, 213–224.

    Article  CAS  PubMed  Google Scholar 

  33. Finlay, W. J., Cunningham, O., Lambert, M. A., Darmanin-Sheehan, A., Liu, X., Fennell, B. J., Mahon, C. M., Cummins, E., Wade, J. M., & O’Sullivan, C. M. (2009). Affinity maturation of a humanized rat antibody for Anti-RAGE therapy: Comprehensive mutagenesis reveals a high level of mutational plasticity both inside and outside the complementarity-determining regions. Journal of Molecular Biology, 388, 541–558.

    Article  CAS  PubMed  Google Scholar 

  34. Zahnd, C., Wyler, E., Schwenk, J. M., Steiner, D., Lawrence, M. C., McKern, N. M., Pecorari, F., Ward, C. W., Joos, T. O., & Pluckthun, A. (2007). A designed ankyrin repeat protein evolved to picomolar affinity to Her2. Journal of Molecular Biology, 369, 1015–1028.

    Article  CAS  PubMed  Google Scholar 

  35. Po, K., Chan, E., & Chen, S. (2017) Functional characterization of CTX-M-14 and CTX-M-15 β-lactamase by in vitro DNA shuffling. Antimicrobial Agents & Chemotherapy, 61, AAC.00891–AAC.00817.

    Article  Google Scholar 

  36. Sheedy, C., Yau, K. Y., Hirama, T., Mackenzie, C. R., & Hall, J. C. (2006). Selection, characterization, and CDR shuffling of naive llama single-domain antibodies selected against auxin and their cross-reactivity with auxinic herbicides from four chemical families. Journal of Agricultural & Food Chemistry, 54, 3668–3678.

    Article  CAS  Google Scholar 

  37. Schilling, J., Schoppe, J., & Plückthun, A. (2014). From DARPins to LoopDARPins: Novel LoopDARPin design allows the selection of low picomolar binders in a single round of ribosome display. Journal of Molecular Biology, 426, 691–721.

    Article  CAS  PubMed  Google Scholar 

  38. Rothe, A., Nathanielsz, A., Hosse, R. J., Oberhauser, F., Strandmann, E. P., Engert, A., Hudson, P. J., & Power, B. E. (2007). Selection of human anti-CD28 scFvs from a T-NHL related scFv library using ribosome display. Journal of Biotechnology, 130, 448–454.

    Article  CAS  PubMed  Google Scholar 

  39. Grimm, S., Salahshour, S., & Nygren, P. (2012). Monitored whole gene in vitro evolution of an anti-hRaf-1 affibody molecule towards increased binding affinity. New Biotechnology, 29, 534–542.

    Article  CAS  PubMed  Google Scholar 

  40. Buchanan, A., Ferraro, F., Rust, S., Sridharan, S., Franks, R., Dean, G., McCourt, M., Jermutus, L., & Minter, R. (2012). Improved drug-like properties of therapeutic proteins by directed evolution. Protein engineering, design & Selection: PEDS, 25, 631–638.

    Article  CAS  Google Scholar 

  41. Matsuura, T., & Plückthun, A. (2003). Selection based on the folding properties of proteins with ribosome display. FEBS Letters, 539, 24–28.

    Article  CAS  PubMed  Google Scholar 

  42. Harel, I. N., & Benhar, I. (2012). Selection of antibodies from synthetic antibody libraries. Archives of Biochemistry & Biophysics, 526, 87–98.

    Article  CAS  Google Scholar 

  43. Jiao, L., Liu, Y., Zhang, X., Liu, B., Zhang, C., & Liu, X. (2017). Site-saturation mutagenesis library construction and screening for specific broad-spectrum single-domain antibodies against multiple Cry1 toxins. Applied Microbiology and Biotechnology, 101, 6071–6082.

    Article  CAS  PubMed  Google Scholar 

  44. Sheedy, C., Roger MacKenzie, C., & Hall, J. C. (2007). Isolation and affinity maturation of hapten-specific antibodies. Biotechnology Advances, 25, 333–352.

    Article  CAS  PubMed  Google Scholar 

  45. Thom, G., Cockroft, A. C., Buchanan, A. G., Canclotti, C. J., Cohen, E. S., Lowne, D., Monk, P., Shorrock-Hart, C. P., Jermutus, L., & Minter, R. R. (2006). Probing a protein-protein interaction by in vitro evolution. Proceedings of the National Academy of Sciences of the United States of America, 103, 7619–7624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zahnd, C., Pecorari, F., Straumann, N., Wyler, E., & Plückthun, A. (2006). Selection and characterization of Her2 binding-designed ankyrin repeat proteins. Journal of Biological Chemistry, 281, 35167.

    Article  CAS  PubMed  Google Scholar 

  47. Stemmer, W. P. C. (1994). Rapid evolution of a protein in vitro by DNA shuffling. Nature, 370, 389–391.

    Article  CAS  Google Scholar 

  48. Dreier, B., & Plückthun, A. (2011). Ribosome display: A technology for selecting and evolving proteins from large libraries. Methods in Molecular Biology, 687, 283–306.

    Article  CAS  PubMed  Google Scholar 

  49. Zhao, H., & Zha, W. (2006). In vitro ‘sexual’ evolution through the PCR-based staggered extension process (StEP). Nature Protocols, 1, 1865–1871.

    Article  CAS  PubMed  Google Scholar 

  50. Groves, M. A. T., & Osbourn, J. K. (2005). Applications of ribosome display to antibody drug discovery. Expert Opinion on Biological Therapy, 5, 125–135.

    Article  CAS  PubMed  Google Scholar 

  51. Zahnd, C., Spinelli, S., Luginbühl, B., Amstutz, P., Cambillau, C., & Plückthun, A. (2004). Directed in vitro evolution and crystallographic analysis of a peptide-binding single chain antibody fragment (scFv) with low picomolar affinity. Journal of Biological Chemistry, 279, 18870–18877.

    Article  CAS  PubMed  Google Scholar 

  52. Huang, R., Gorman, K. T., Vinci, C. R., Dobrovetsky, E., Graslund, S., & Kay, B. K. (2015). Streamlining the pipeline for generation of recombinant affinity reagents by integrating the affinity maturation step. International Journal of Molecular Sciences, 16, 23587–23603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zahnd, C., Sarkar, C. A., & Plückthun, A. (2010). Computational analysis of off-rate selection experiments to optimize affinity maturation by directed evolution. Protein Engineering Design & Selection Peds, 23, 175.

    Article  CAS  Google Scholar 

  54. Luginbühl, B., Kanyo, Z., Jones, R. M., Fletterick, R. J., Prusiner, S. B., Cohen, F. E., Williamson, R. A., Burton, D. R., & Plückthun, A. (2006). Directed evolution of an anti-prion protein scFv fragment to an affinity of 1 pM and its structural interpretation. Journal of Molecular Biology, 363, 75–97.

    Article  CAS  PubMed  Google Scholar 

  55. Liu, J. Q., Ning, B., Liu, M., Sun, Y. A., Sun, Z. Y., Zhang, Y. H., Fan, X. J., Zhou, Z. J., & Gao, Z. X. (2012). Construction of ribosome display library based on lipocalin scaffold and screening anticalins with specificity for estradiol. Analyst, 137, 2470–2479.

    Article  CAS  PubMed  Google Scholar 

  56. Chin, S. E., Ferraro, F., Groves, M., Liang, M., Vaughan, T. J., & Dobson, C. L. (2015). Isolation of high-affinity, neutralizing anti-idiotype antibodies by phage and ribosome display for application in immunogenicity and pharmacokinetic analyses. Journal of Immunological Methods, 416, 49–58.

    Article  CAS  PubMed  Google Scholar 

  57. Dreier, B., & Plückthun, A. (2012). Rapid selection of high-affinity binders using ribosome display. Methods in Molecular Biology, 805, 261–286.

    Article  CAS  PubMed  Google Scholar 

  58. Chames, P., Van Regenmortel, M., Weiss, E., & Baty, D. (2009). Therapeutic antibodies: Successes, limitations and hopes for the future. British Journal of Pharmacology, 157, 220–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jermutus, L., Honegger, A., Schwesinger, F., Hanes, J., & Plückthun, A. (2001). Tailoring in vitro evolution for protein affinity or stability. Proceedings of the National Academy of Sciences of the United States of America, 98, 75.

    Article  CAS  PubMed  Google Scholar 

  60. Heyduk, E., & Heyduk, T. (2014). Ribosome display enhanced by next generation sequencing: A tool to identify antibody-specific peptide ligands. Analytical Biochemistry, 464, 73–82.

    Article  CAS  PubMed  Google Scholar 

  61. Consortium, I. H. G. S. (2004). Finishing the euchromatic sequence of the human genome. Nature, 431, 931–945.

    Article  CAS  Google Scholar 

  62. Galan, A., Comor, L., Horvatic, A., Kules, J., Guillemin, N., Mrljak, V., & Bhide, M. (2016). Library-based display technologies: where do we stand? Molecular Biosystems, 12, 2342–2358.

    Article  CAS  PubMed  Google Scholar 

  63. Stefan, N., Martinkillias, P., Wyssstoeckle, S., Honegger, A., Zangemeisterwittke, U., & Plückthun, A. (2011). DARPins recognizing the tumor-associated antigen EpCAM selected by phage and ribosome display and engineered for multivalency. Journal of Molecular Biology, 413, 826–843.

    Article  CAS  PubMed  Google Scholar 

  64. Dreier, B., Mikheeva, G., Belousova, N., Parizek, P., Boczek, E., Jelesarov, I., Forrer, P., Plückthun, A., & Krasnykh, V. (2011). Her2-specific multivalent adapters confer designed tropism to adenovirus for gene targeting. Journal of Molecular Biology, 405, 410–426.

    Article  CAS  PubMed  Google Scholar 

  65. Zellweger, F., Gasser, P., Brigger, D., Buschor, P., Vogel, M., & Eggel, A. (2017). A novel bispecific DARPin targeting FcgammaRIIB and FcepsilonRI-bound IgE inhibits allergic responses. Allergy, 72, 1174–1183.

    Article  CAS  PubMed  Google Scholar 

  66. Chen, F., Zhao, Y., Liu, M., Li, D., Wu, H., Chen, H., Zhu, Y., Luo, F., Zhong, J., Zhou, Y., Qi, Z., & Zhang, X. L. (2010). Functional selection of hepatitis C virus envelope E2-binding Peptide ligands by using ribosome display. Antimicrobial Agents and Chemotherapy, 54, 3355–3364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cheng, H., Chen, Y., Yang, Y., Chen, X., Guo, X., & Du, A. (2015) Characterization of anti-citrinin specific ScFvs selected from non-immunized mouse splenocytes by eukaryotic ribosome display. PLoS ONE, 10, e0131482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kanamori, T., Fujino, Y., & Ueda, T. (2014). PURE ribosome display and its application in antibody technology. Biochimica Et Biophysica Acta-Proteins and Proteomics, 1844, 1925–1932.

    Article  CAS  Google Scholar 

  69. Gu, L. C., Li, C., Aach, J., Hill, D. E., Vidal, M., & Church, G. M. (2014). Multiplex single-molecule interaction profiling of DNA-barcoded proteins. Nature, 515, 554–557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Li, Z., Uzawa, T., Zhao, H., Luo, S. C., Yu, H. H., Kobatake, E., & Ito, Y. (2013). In vitro selection of peptide aptamers using a ribosome display for a conducting polymer. Journal of Bioscience & Bioengineering, 117, 501–503.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank colleagues working on display technologies in our laboratory for their assistance in the field. This work is supported by Grants from National Natural Science Foundation of China (No. 31470967).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to He Huang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Research Involving Human Participants and/or Animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Kang, G., Hu, M. et al. Ribosome Display: A Potent Display Technology used for Selecting and Evolving Specific Binders with Desired Properties. Mol Biotechnol 61, 60–71 (2019). https://doi.org/10.1007/s12033-018-0133-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-018-0133-0

Keywords

Navigation