Skip to main content
Log in

Characterization of an Insecticidal Protein from Withania somnifera Against Lepidopteran and Hemipteran Pest

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Lectins are carbohydrate-binding proteins with wide array of functions including plant defense against pathogens and insect pests. In the present study, a putative mannose-binding lectin (WsMBP1) of 1124 bp was isolated from leaves of Withania somnifera. The gene was expressed in E. coli, and the recombinant WsMBP1 with a predicted molecular weight of 31 kDa was tested for its insecticidal properties against Hyblaea puera (Lepidoptera: Hyblaeidae) and Probergrothius sanguinolens (Hemiptera: Pyrrhocoridae). Delay in growth and metamorphosis, decreased larval body mass and increased mortality was recorded in recombinant WsMBP1-fed larvae. Histological studies on the midgut of lectin-treated insects showed disrupted and diffused secretory cells surrounding the gut lumen in larvae of H. puera and P. sanguinolens, implicating its role in disruption of the digestive process and nutrient assimilation in the studied insect pests. The present study indicates that WsMBP1 can act as a potential gene resource in future transformation programs for incorporating insect pest tolerance in susceptible plant genotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ahmed, M., Shah, A. D., Rauf, M., Habib, I., Shehzad, K., Mukhtar, Z., et al. (2017). Ectopic Expression of the Leptochloa fusca and Allium cepa lectin genes in tobacco plant for resistance against mealybug (Phenococcus solenopsis). Journal of Genetics and Genomics, 1, 108.

    Google Scholar 

  2. Al Atalah, A. B., Smagghe, G., & Van Damme, E. J. (2014). Orysata, a jacalin-related lectin from rice, could protect plants against biting-chewing and piercing-sucking insects. Plant Science, 21, 221–2242.

    Google Scholar 

  3. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215, 403–410.

    Article  CAS  Google Scholar 

  4. Bakhsha, A., Zia, M. A. B., Hussain, T., Tekeli, F. O., & Gokce, A. F. (2016). Members of Alliaceae; better source of plant lectins to combat resistance against sucking pests of crops. Acta Horticulture, 1143, 333–340.

    Article  Google Scholar 

  5. Bandyopadhyay, S., Roy, A., & Das, S. (2001). Binding of garlic (Allium sativum) leaf lectin to the gut receptors of homopteran pests is correlated to its insecticidal activity. Plant Science, 161, 1025–1033.

    Article  CAS  Google Scholar 

  6. Barre, A., Hervé, C., Lescure, B., & Rougé, P. (2002). Lectin receptor kinases in plants. Critical Reviews in Plant Sciences, 21, 379–399.

    Article  CAS  Google Scholar 

  7. Bhatia, V., Uniyal, P. L., & Bhattacharya, R. (2011). Aphid resistance in Brassica crops, challenges, biotechnological progress and emerging possibilities. Biotechnology Advances, 29, 879–888.

    Article  Google Scholar 

  8. Chakraborti, D., Sarkar, A., Mondal, H., & Das, S. (2009). Tissue specific expression of potent insecticidal, Allium sativum leaf agglutinin (ASAL) in important pulse crop, chickpea (Cicer arietinum L.) to resist the phloem feeding Aphis craccivora. Transgenic Research, 18, 529–544.

    Article  CAS  Google Scholar 

  9. Chrispeels, M. J., & Raikhel, N. V. (1991). Lectins, lectin genes, and their role in plant defense. Plant Cell, 3, 1–9.

    Article  CAS  Google Scholar 

  10. Das, A., Roy, A., Hess, D., & Das, S. (2013). Characterization of a highly potent insecticidal lectin from Colocasia esculenta tuber and cloning of its coding sequence. American Journal of Plant Sciences, 4, 408–416.

    Article  Google Scholar 

  11. Dutta, I., Saha, P., Majumdar, P., Sarkar, A., Chakraborti, D., Banerjee, S., et al. (2005). The efficacy of a novel insecticidal protein, Allium sativum leaf lectin (ASAL), against Homopteran insects monitored in transgenic tobacco. Plant Biotechnology Journal, 3, 601–611.

    Article  CAS  Google Scholar 

  12. Fitches, E. C., Gatehouse, A. M. R., & Gatehouse, J. A. (1997). Effects of snowdrop lectin (GNA) delivered via artificial diet and transgenic plants on the development of tomato moth (Lacanobia oleracea) larvae in laboratory and glasshouse trials. Journal of Insect Physiology, 43, 727–739.

    Article  CAS  Google Scholar 

  13. Fitches, E. C., Woodhouse, S. D., Edwards, J. P., & Gatehouse, J. A. (2001). In vitro and in vivo binding of snowdrop (Galanthus nivalis agglutinin; GNA) and jackbean (Canavalia ensiformis; ConA) lectins within tomato moth (Lacanobia oleracea) larvae; mechanisms of insecticidal action. Journal of Insect Physiology, 47, 777–787.

    Article  CAS  Google Scholar 

  14. Foissac, X., Thi Loc, N., Christou, P., Gatehouse, A. M., & Gatehouse, J. A. (2000). Resistance to green leafhopper (Nephotettix virescens) and brown planthopper (Nilaparvata lugens) in transgenic rice expressing snowdrop lectin (Galanthus nivalis agglutinin; GNA). Journal of Insect Physiology, 46, 573–583.

    Article  CAS  Google Scholar 

  15. Gatehouse, A. M. R., Davison, G. M., Stewart, J. N., Gatehouse, L. N., Kumar, A., Geoghegan, I. E., et al. (1999). Concanavalin A inhibits development of tomato moth (Lacanobia oleracea) and peach-potato aphid (Myzus persicae) when expressed in transgenic potato plants. Molecular Breeding, 5, 153–165.

    Article  CAS  Google Scholar 

  16. Ghosh Dasgupta, M., George, B. S., Bhatia, A., & Sidhu, O. P. (2014). Characterization of Withania somnifera leaf transcriptome and expression analysis of pathogenesis—Related genes during salicylic acid signaling. PLoS ONE, 9(4), e94803.

    Article  Google Scholar 

  17. Guidarelli, M., Zoli, L., Orlandini, A., Bertolini, P., & Baraldi, E. (2014). The mannose-binding lectin gene FaMBL1 is involved in the resistance of unripe strawberry fruits to Colletotrichum acutatum. Molecular Plant Pathology, 15, 832–840.

    Article  CAS  Google Scholar 

  18. Hossain, M. A., Maiti, M. K., Basu, A., Sen, S., Ghosh, A. K., & Sen, S. K. (2006). Transgenic expression of onion leaf lectin gene in Indian mustard offers protection against aphid colonization. Crop Science, 46, 2022–2032.

    Article  CAS  Google Scholar 

  19. Huang, D. F., Pan, Y. H., Zhang, S. X., Cao, J. P., Yang, X. M., Zhang, J., et al. (1997). The discovery of insecticidal protein against aphids from Pinellia pedatisecta and P ternate. Scientia Agricultura Sinica, 30, 94.

    Google Scholar 

  20. Hwang, I. S., & Hwang, B. K. (2011). The pepper mannose-binding lectin gene CaMBL1 is required to regulate cell death and defense responses to microbial pathogens. Plant Physiology, 155, 447–463.

    Article  CAS  Google Scholar 

  21. Javaid, S., Amin, I., Jander, G., Mukhtar, Z., Saeed, N. A., & Mansoor, S. (2016). A transgenic approach to control hemipteran insects by expressing insecticidal genes under phloem-specific promoters. Scientific Reports, 6, 34706.

    Article  CAS  Google Scholar 

  22. Jiang, S. Y., Ma, Z., & Ramachandran, S. (2010). Evolutionary history and stress regulation of the lectins superfamily in higher plants. BMC Evolutionary Biology, 18, v79.

    Article  Google Scholar 

  23. Kai, G., Zhao, L., Zheng, J., Zhang, L., Miao, Z., Sun, X., et al. (2004). Isolation and characterization of a new mannose-binding lectin gene from Taxus media. Journal of Biosciences, 29, 399–407.

    Article  CAS  Google Scholar 

  24. Karban, R., & Kuć, J. (1999). Induced resistance against pathogens and herbivores: An overview. In A. A. Agrawal, S. Tuzun, & E. Bent (Eds.), Induced plant defenses against pathogens and herbivores (pp. 1–16). St Paul, MN: APS Press.

    Google Scholar 

  25. Kitajima, S., Miura, K., Aoki, W., Yamato, K. T., Taira, T., Murakami, R., et al. (2016). Transcriptome and proteome analyses provide insight into laticifer’s defense of Euphorbia tirucalli against pests. Plant Physiology and Biochemistry, 108, 434–446.

    Article  CAS  Google Scholar 

  26. Lannoo, N., & Van Damme, E. J. M. (2014). Lectin domains at the frontiers of plant defense. Frontiers in Plant Science, 5, 397.

    Google Scholar 

  27. Liener, I. E., Sharon, N., & Goldstein, I. J. (1986). The lectins, properties, functions and applications in biology and medicine. New York: Academic Press.

    Google Scholar 

  28. Macedo, M., Oliveira, C., & Oliveira, C. (2015). Insecticidal activity of plant lectins and potential application in crop protection. Molecules, 20, 2014–2033.

    Article  Google Scholar 

  29. Machuka, J., Van Damme, E. J. M., Peumans, W. J., & Jackai, L. E. N. (1999). Effects of plant lectins on larval development of the legume pod borer, Maruca vitrata. Entomologia Experimentalis et Applicata, 93, 179–187.

    Article  CAS  Google Scholar 

  30. Majumder, P., Banerjee, S., & Das, S. (2004). Identification of receptors responsible for binding of the mannose specific lectin to the gut epithelial membrane of the target insects. Glycoconjugate Journal, 20, 525–530.

    Article  CAS  Google Scholar 

  31. Malone, L. A., Gatehouse, A. M. R., & Barratt, B. I. P. (2008). Beyond Bt: Alternative strategies for insect-resistant genetically modified crops. In J. Romeis, A. M. Shelton, & G. G. Kennedy (Eds.), Integration of insect-resistant genetically modified crops within IPM programs (Vol. 5, pp. 357–417). Dordrecht: Springer.

    Chapter  Google Scholar 

  32. Michiels, K., Van Damme, E. J. M., & Smagghe, G. (2010). Plant-insect interactions, what can we learn from plant lectins? Archives of Insect Biochemistry and Physiology, 73, 193–212.

    Article  CAS  Google Scholar 

  33. Mohan Babu, R., Sajeena, A., Seetharaman, K., & Reddy, M. S. (2003). Advances in genetically engineered (transgenic) plants in pest management—An overview. Crop Protection, 22, 1071–1086.

    Article  Google Scholar 

  34. Mondal, H. A., Chakraborti, D., Majumder, P., Roy, P., Roy, A., Bhattacharya, S. G., et al. (2011). Allergenicity assessment of Allium sativum leaf agglutinin, a potential candidate protein for developing sap sucking insect resistant food crops. PLoS ONE, 6(11), e27716.

    Article  CAS  Google Scholar 

  35. Mooney, C., Wang, Y., & Pollastri, G. (2011). SCLpred, protein subcellular localization prediction by N-to-1 neural networks. Bioinformatics, 27, 2812–2819.

    Article  CAS  Google Scholar 

  36. Motamayor, J. C., Mockaitis, K., Schmutz, J., Haiminen, N., Livingstone, D., III, Cornejo, O., et al. (2013). The genome sequence of the most widely cultivated cacao type and its use to identify candidate genes regulating pod color. Genome Biology, 14, r53.

    Article  Google Scholar 

  37. Nagadhara, D., Ramesh, S., Pasalu, I. C., Rao, Y. K., Krishnaiah, N. V., Sarma, N. P., et al. (2003). Transgenic indica rice resistant to sap-sucking insects. Plant Biotechnology Journal, 1, 231–240.

    Article  CAS  Google Scholar 

  38. Naghdi, M., & Bandani, A. R. (2013). The effect of GNA lectin on the α-amylase activity of the beet armyworm, Spodoptera exigua Hb. (Lepidoptera: Noctuidae). Archives of Phytopathology and Plant Protection, 46, 1270–1277.

    Article  CAS  Google Scholar 

  39. Ohizumi, Y., Gaidamashvili, M., Ohwada, S., Matsuda, K., Kominami, J., Nakamura-Tsuruta, S., et al. (2009). Mannose-binding lectin from yam (Dioscorea batatas) tubers with insecticidal properties against Helicoverpa armigera (Lepidoptera: Noctuidae). Journal of Agriculture and Food Chemistry, 57, 2896–2902.

    Article  CAS  Google Scholar 

  40. Pan, Y. H., Zhang, S. X., Cao, J. P., & Huang, D. F. (1998). The isolation, purification of Pinellia pedatisecta lectin and its activity on aphid-resistance. Progress in Natural Science, 8, 502–505.

    Google Scholar 

  41. Peumans, W. J., & Van Damme, E. J. M. (1995). Lectins as plant defense proteins. Plant Physiology, 109, 347–352.

    Article  CAS  Google Scholar 

  42. Roy, A., Banerjee, S., Majumder, P., & Das, S. (2002). Efficiency of mannose-binding plant lectins in controlling a homopteran insect, the red cotton bug. Journal of Agricultural and Food Chemistry, 50, 6775–6779.

    Article  CAS  Google Scholar 

  43. Roy, A., Gupta, S., Hess, D., Das, K. P., & Das, S. (2014). Binding of insecticidal lectin Colocasia esculenta tuber agglutinin (cea) to midgut receptors of Bemisia tabaci and Lipaphis erysimi provides clues to its insecticidal potential. Proteomics, 14, 1646–1659.

    Article  CAS  Google Scholar 

  44. Sadeghi, A., Smagghe, G., Broeders, S., Hernalsteens, J.-P., Greve, H. D., Peumans, W. J., et al. (2008). Ectopically expressed leaf and bulb lectins from garlic (Allium sativum L.) protect transgenic tobacco plants against cotton leafworm (Spodoptera littoralis). Transgenic Research, 7, 9–18.

    Article  Google Scholar 

  45. Sadeghi, A., Smagghe, G., Jurado-Jacome, E., Peumans, W., & Van Damme, E. J. M. (2009). Laboratory study of the effects of leek lectin (APA) in transgenic tobacco plants on the development of cotton leafworm Spodoptera littoralis (Noctuidae: Lepidoptera). European Journal of Entomology, 106, 21–28.

    Article  CAS  Google Scholar 

  46. Saha, P., Majumder, P., Dutta, I., Ray, T., Roy, S. C., & Das, S. (2006). Transgenic rice expressing Allium sativum leaf lectin with enhanced resistance against sap-sucking insect pests. Planta, 223, 1329.

    Article  CAS  Google Scholar 

  47. Sauvion, N., Rahbé, Y., Peumans, W. J., Van Damme, E. J. M., Gatehouse, J. A., & Gatehouse, A. M. R. (1996). Effects of GNA and other mannose binding lectins on development and fecundity of the peach-potato aphid Myzus persicae. Entomologia Experimentalis et Applicata, 79, 285–293.

    Article  CAS  Google Scholar 

  48. Sauvion, N., Nerdon, C., Febvay, G., Gatehouse, A. M. R., & Rahbé, Y. (2004). Binding of the insecticidal lectin Concanavalin A in pea aphid, Acyrthosiphon pisum (Harris) and induced effects on the structure of midgut epithelial cells. Journal of Insect Physiology, 5, 1137–1150.

    Article  Google Scholar 

  49. Setamou, M., Bernal, J. S., Legaspi, J. C., Mirkov, T. E., & Legaspi, B. C. (2002). Evaluation of lectin expressing transgenic sugarcane against stalkborers (Lepidoptera, Pyralidae), effects on life history parameters. Journal of Economic Entomology, 95, 469–477.

    Article  CAS  Google Scholar 

  50. Sharon, N., & Lis, H. (1990). Legume lectins—A large family of homologous proteins. FASEB Journal, 4, 3198–3208.

    Article  CAS  Google Scholar 

  51. Singh, R., Sarao, N. K., Mohanpuria, P., & Yadav, I. S. (2016). Molecular characterization of mannose specific lectin gene, ASAL1 from Garlic leaf (Allium sativum L). IJAEB, 9, 153–161.

    Google Scholar 

  52. Smeets, K., Van Damme, E. J., Verhaert, P., Barre, A., Rouge, P., Van Leuven, F., et al. (1997). Isolation, characterization and molecular cloning of the mannose-binding lectins from leaves and roots of garlic (Allium sativum L). Plant Molecular Biology, 33, 223–234.

    Article  CAS  Google Scholar 

  53. Sprawka, I., Goławska, S., Parzych, T., Goławski, A., Czerniewicz, P., & Sytykiewicz, H. (2014). Mechanism of entomotoxicity of the Concanavalin A in Rhopalosiphum padi (Hemiptera: Aphididae). Journal of Insect Science, 14, 232.

    Article  Google Scholar 

  54. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5, molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution. https://doi.org/10.1093/molbev/msr121.

    Google Scholar 

  55. Vallad, G. E., & Goodman, R. M. (2004). Systemic acquired resistance and induced systemic resistance in conventional agriculture. Crop Science, 44, 1920–1934.

    Article  Google Scholar 

  56. Van Damme, E. J. M., Allen, A. K., & Peumans, W. J. (1987). Isolation and characterization of a lectin with exclusive specificity towards mannose from snowdrop (Galanthus nivalis) bulbs. FEBS Letters, 215, 140.

    Article  Google Scholar 

  57. Van Damme, E. J. M., Corinne, H. A., Barre, A., Rouge, P., & Peumans, W. J. (2000). Cloning and characterization of a monocot mannose-binding lectin from Crocus vernus (family Iridaceae). European Journal of Biochemistry, 267, 5067–5077.

    Article  Google Scholar 

  58. Van Damme, E. J. M., Kaku, H., Perini, F., Goldstein, I. J., Peeters, B., Yagi, F., et al. (1991). Biosynthesis, primary structure and molecular cloning of snowdrop (Galanthus nivalis L) lectin. European Journal of Biochemistry, 202, 23–30.

    Article  Google Scholar 

  59. Van Damme, E. J. M., Lannoo, N., & Peumans, W. J. (2008). Plant lectins. Advances in Botanical Research, 48, 108–209.

    Google Scholar 

  60. Van Damme, E. J. M., Peumans, W. J., Barre, A., & Rougé, P. (1998). Plant lectins, a composite of several distinct families of structurally and evolutionary related proteins with diverse biological roles. Critical Reviews in Plant Sciences, 17, 575–692.

    Article  Google Scholar 

  61. Vandenborre, G., Smagghe, G., & Van Damme, E. J. (2011). Plant lectins as defense proteins against phytophagous insects. Phytochemistry, 72, 1538–1550.

    Article  CAS  Google Scholar 

  62. Wakefield, M. E., Bell, H. A., Fitches, E. C., Edwards, J. P., & Gatehouse, A. M. (2006). Effects of Galanthus nivalis agglutinin (GNA) expressed in tomato leaves on larvae of the tomato moth Lacanobia oleracea (Lepidoptera: Noctuidae) and the effect of GNA on the development of the endoparasitoid Meteorus gyrator (Hymenoptera: Braconidae). Bulletin of Entomological Research, 96, 43–52.

    Article  CAS  Google Scholar 

  63. Wu, A., Sun, X., Pang, Y., & Tang, K. (2002). Homozygous transgenic rice lines expressing GNA with enhanced resistance to the rice sap-sucking pest Laodelphax striatellus. Plant Breed, 121, 93–95.

    Article  Google Scholar 

  64. Yarasi, B., Sadumpati, V., Immanni, C. P., Vudem, D. R., & Khareedu, V. R. (2008). Transgenic rice expressing Allium sativum leaf lectin (ASAL) exhibits high level resistance against major sap-sucking pests. BMC Plant Biology, 8, 102.

    Article  Google Scholar 

  65. Zapata, N., Van Damme, E. J. M., Vargas, M., Devotto, L., & Smagghe, G. (2016). Insecticidal activity of a protein extracted from bulbs of Phycella australis Ravenna against the aphids Acyrthosiphon pisum Harris and Myzus persicae Sulzer. Chilean Journal of Agricultural Research, 76, 188–194.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Department of Biotechnology, Government of India, for funding the research work. The funding support as research fellowship was provided to BSG by Department of Biotechnology, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Modhumita Ghosh Dasgupta.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

George, B.S., Silambarasan, S., Senthil, K. et al. Characterization of an Insecticidal Protein from Withania somnifera Against Lepidopteran and Hemipteran Pest. Mol Biotechnol 60, 290–301 (2018). https://doi.org/10.1007/s12033-018-0070-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-018-0070-y

Keywords

Navigation