Skip to main content

Advertisement

Log in

N-Glycosylation in progression of skin cancer

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Skin cancer can be classified as cutaneous malignant melanoma, basal cell carcinoma, and squamous cell carcinoma. Due to the high level of morbidity and mortality, skin cancer has become a global public health issue worldwide while the pathogenesis of skin cancer is still unclear. It is necessary to further identify the pathogenesis of skin cancer and find candidate targets to diagnose and treat skin cancer. A variety of factors are known to be associated with skin cancer including N-glycosylation, which partly explained the malignant behaviors of skin cancer. In this review, we retrieved databases such as PubMed and Web of Science to elucidate its relationship between glycosylation and skin cancer. We summarized some key glycosyltransferases and proteins during the process of N-glycosylation related to skin cancer, which was helpful to unmask the additional mechanism of skin cancer and find some novel targets of skin cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Leiter U, Eigentler T, Garbe C. Epidemiology of skin cancer. Adv Exp Med Biol. 2014;810:120–40.

    PubMed  Google Scholar 

  2. Tracey EH, Vij A. Updates in melanoma. Dermatol Clin. 2019;37(1):73–82. https://doi.org/10.1016/j.det.2018.08.003.

    Article  CAS  PubMed  Google Scholar 

  3. Fahradyan A, Howell AC, Wolfswinkel EM, Tsuha M, Sheth P, Wong AK. Updates on the management of non-melanoma skin cancer (NMSC). Healthcare. 2017. https://doi.org/10.3390/healthcare5040082.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Geller AC, Colditz G, Oliveria S, Emmons K, Jorgensen C, Aweh GN, et al. Use of sunscreen, sunburning rates, and tanning bed use among more than 10 000 US children and adolescents. Pediatrics. 2002;109(6):1009–14.

    Article  PubMed  Google Scholar 

  5. Chahal HS, Lin Y, Ransohoff KJ, Hinds DA, Wu W, Dai HJ, et al. Genome-wide association study identifies novel susceptibility loci for cutaneous squamous cell carcinoma. Nat Commun. 2016;7:12048. https://doi.org/10.1038/ncomms12048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Buster KJ, You Z, Fouad M, Elmets C. Skin cancer risk perceptions: a comparison across ethnicity, age, education, gender, and income. J Am Acad Dermatol. 2012;66(5):771–9. https://doi.org/10.1016/j.jaad.2011.05.021.

    Article  PubMed  Google Scholar 

  7. Kinslechner K, Schorghofer D, Schutz B, Vallianou M, Wingelhofer B, Mikulits W, et al. Malignant phenotypes in metastatic melanoma are governed by SR-BI and its association with glycosylation and STAT5 activation. Mol Cancer Res. 2018;16(1):135–46. https://doi.org/10.1158/1541-7786.mcr-17-0292.

    Article  CAS  PubMed  Google Scholar 

  8. Bond MR, Hanover JA. A little sugar goes a long way: the cell biology of O-GlcNAc. J Cell Biol. 2015;208(7):869–80. https://doi.org/10.1083/jcb.201501101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Khoury GA, Baliban RC, Floudas CA. Proteome-wide post-translational modification statistics: frequency analysis and curation of the swiss-prot database. Sci Rep. 2011. https://doi.org/10.1038/srep00090.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Achalli S, Madi M, Babu SG, Shetty SR, Kumari S, Bhat S. Sialic acid as a biomarker of oral potentially malignant disorders and oral cancer. Indian J Dent Res. 2017;28(4):395–9. https://doi.org/10.4103/ijdr.IJDR_632_16.

    Article  PubMed  Google Scholar 

  11. Helenius A, Aebi M. Intracellular functions of N-linked glycans. Science. 2001;291(5512):2364–9.

    Article  CAS  PubMed  Google Scholar 

  12. Banerjee DK. N-glycans in cell survival and death: cross-talk between glycosyltransferases. Biochem Biophys Acta. 2012;1820(9):1338–46. https://doi.org/10.1016/j.bbagen.2012.01.013.

    Article  CAS  PubMed  Google Scholar 

  13. Konopka JB. N-acetylglucosamine (GlcNAc) functions in cell signaling. Scientifica. 2012. https://doi.org/10.6064/2012/489208.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wang X, He H, Zhang H, Chen W, Ji Y, Tang Z, et al. Clinical and prognostic implications of beta1, 6-N-acetylglucosaminyltransferase V in patients with gastric cancer. Cancer Sci. 2013;104(2):185–93. https://doi.org/10.1111/cas.12049.

    Article  CAS  PubMed  Google Scholar 

  15. Huang C, Huang M, Chen W, Zhu W, Meng H, Guo L, et al. N-acetylglucosaminyltransferase V modulates radiosensitivity and migration of small cell lung cancer through epithelial–mesenchymal transition. FEBS J. 2015;282(22):4295–306. https://doi.org/10.1111/febs.13419.

    Article  CAS  PubMed  Google Scholar 

  16. Liu Y, Liu H, Liu W, Zhang W, An H, Xu J. Beta1,6-N-acetylglucosaminyltransferase V predicts recurrence and survival of patients with clear-cell renal cell carcinoma after surgical resection. World J Urol. 2015;33(11):1791–9. https://doi.org/10.1007/s00345-014-1451-x.

    Article  CAS  PubMed  Google Scholar 

  17. Pochec E, Rydlewska M, Przybylo M, Litynska A. Diverse expression of N-acetylglucosaminyltransferase V and complex-type beta1,6-branched N-glycans in uveal and cutaneous melanoma cells. Acta Biochim Pol. 2015;62(2):323–8. https://doi.org/10.18388/abp.2015_1050.

    Article  CAS  PubMed  Google Scholar 

  18. Narasimhan S. Control of glycoprotein synthesis. UDP-GlcNAc:glycopeptide beta 4-N-acetylglucosaminyltransferase III, an enzyme in hen oviduct which adds GlcNAc in beta 1-4 linkage to the beta-linked mannose of the trimannosyl core of N-glycosyl oligosaccharides. J Biol Chem. 1982;257(17):10235–42.

    CAS  PubMed  Google Scholar 

  19. Allam H, Johnson BP, Zhang M, Lu Z, Cannon MJ, Abbott KL. The glycosyltransferase GnT-III activates Notch signaling and drives stem cell expansion to promote the growth and invasion of ovarian cancer. J Biol Chem. 2017;292(39):16351–9. https://doi.org/10.1074/jbc.M117.783936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yoshimura M, Ihara Y, Taniguchi N. Changes of beta-1,4-N-acetylglucosaminyltransferase III (GnT-III) in patients with leukaemia. Glycoconj J. 1995;12(3):234–40.

    Article  CAS  PubMed  Google Scholar 

  21. Yoshimura M, Nishikawa A, Ihara Y, Taniguchi S, Taniguchi N. Suppression of lung metastasis of B16 mouse melanoma by N-acetylglucosaminyltransferase III gene transfection. Proc Natl Acad Sci USA. 1995;92(19):8754–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li W, Takahashi M, Shibukawa Y, Yokoe S, Gu J, Miyoshi E, et al. Introduction of bisecting GlcNAc in N-glycans of adenylyl cyclase III enhances its activity. Glycobiology. 2007;17(6):655–62. https://doi.org/10.1093/glycob/cwm022.

    Article  CAS  PubMed  Google Scholar 

  23. Kariya Y, Kato R, Itoh S, Fukuda T, Shibukawa Y, Sanzen N, et al. N-glycosylation of laminin-332 regulates its biological functions. A novel function of the bisecting GlcNAc. J Biol Chem. 2008;283(48):33036–45. https://doi.org/10.1074/jbc.m804526200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kariya Y, Kawamura C, Tabei T, Gu J. Bisecting GlcNAc residues on laminin-332 down-regulate galectin-3-dependent keratinocyte motility. J Biol Chem. 2010;285(5):3330–40. https://doi.org/10.1074/jbc.M109.038836.

    Article  CAS  PubMed  Google Scholar 

  25. Lu J, Isaji T, Im S, Fukuda T, Kameyama A, Gu J. Expression of N-acetylglucosaminyltransferase III suppresses alpha2,3-sialylation, and its distinctive functions in cell migration are attributed to alpha2,6-sialylation levels. J Biol Chem. 2016;291(11):5708–20. https://doi.org/10.1074/jbc.M115.712836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dennis JW, Granovsky M, Warren CE. Glycoprotein glycosylation and cancer progression. Biochem Biophys Acta. 1999;1473(1):21–34.

    Article  CAS  PubMed  Google Scholar 

  27. Przybylo M, Martuszewska D, Pochec E, Hoja-Lukowicz D, Litynska A. Identification of proteins bearing beta1-6 branched N-glycans in human melanoma cell lines from different progression stages by tandem mass spectrometry analysis. Biochem Biophys Acta. 2007;1770(9):1427–35. https://doi.org/10.1016/j.bbagen.2007.05.006.

    Article  CAS  PubMed  Google Scholar 

  28. Przybylo M, Pochec E, Link-Lenczowski P, Litynska A. Beta1-6 branching of cell surface glycoproteins may contribute to uveal melanoma progression by up-regulating cell motility. Mol Vis. 2008;14:625–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Pochec E, Zabczynska M, Bubka M, Homa J, Litynska A. Beta1,6-branched complex-type N-glycans affect FAK signaling in metastatic melanoma cells. Cancer Invest. 2016;34(1):45–56. https://doi.org/10.3109/07357907.2015.1102928.

    Article  CAS  PubMed  Google Scholar 

  30. Taniguchi N, Miyoshi E, Ko JH, Ikeda Y, Ihara Y. Implication of N-acetylglucosaminyltransferases III and V in cancer: gene regulation and signaling mechanism. Biochem Biophys Acta. 1999;1455(2–3):287–300.

    CAS  PubMed  Google Scholar 

  31. Tedaldi LM, Pierce M, Wagner GK. Optimised chemical synthesis of 5-substituted UDP-sugars and their evaluation as glycosyltransferase inhibitors. Carbohydr Res. 2012;364:22–7. https://doi.org/10.1016/j.carres.2012.10.009.

    Article  CAS  PubMed  Google Scholar 

  32. Hanashima S, Inamori K, Manabe S, Taniguchi N, Ito Y. Systematic synthesis of bisubstrate-type inhibitors of N-acetylglucosaminyltransferases. Chemistry. 2006;12(13):3449–62. https://doi.org/10.1002/chem.200501348.

    Article  CAS  PubMed  Google Scholar 

  33. Hassani Z, Saleh A, Turpault S, Khiati S, Morelle W, Vignon J, et al. Phostine PST3.1a targets MGAT5 and inhibits glioblastoma-initiating cell invasiveness and proliferation. Mol Cancer Res. 2017;15(10):1376–87. https://doi.org/10.1158/1541-7786.mcr-17-0120.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang J, Liu Y, Deng X, Chen L, Yang X, Yu C. ST6GAL1 negatively regulates monocyte transendothelial migration and atherosclerosis development. Biochem Biophys Res Commun. 2018;500(2):249–55. https://doi.org/10.1016/j.bbrc.2018.04.053.

    Article  CAS  PubMed  Google Scholar 

  35. Chakraborty A, Dorsett KA, Trummell HQ, Yang ES, Oliver PG, Bonner JA, et al. ST6Gal-I sialyltransferase promotes chemoresistance in pancreatic ductal adenocarcinoma by abrogating gemcitabine-mediated DNA damage. J Biol Chem. 2018;293(3):984–94. https://doi.org/10.1074/jbc.M117.808584.

    Article  CAS  PubMed  Google Scholar 

  36. Kolasinska E, Przybylo M, Janik M, Litynska A. Towards understanding the role of sialylation in melanoma progression. Acta Biochim Pol. 2016;63(3):533–41. https://doi.org/10.18388/abp.2015_1221.

    Article  CAS  PubMed  Google Scholar 

  37. Laidler P, Litynska A, Hoja-Lukowicz D, Labedz M, Przybylo M, Ciolczyk-Wierzbicka D, et al. Characterization of glycosylation and adherent properties of melanoma cell lines. Cancer Immunol Immunother. 2006;55(1):112–8. https://doi.org/10.1007/s00262-005-0019-4.

    Article  CAS  PubMed  Google Scholar 

  38. Ferreira SA, Vasconcelos JL, Silva RC, Cavalcanti CL, Bezerra CL, Rego MJ, et al. Expression patterns of alpha2,3-sialyltransferase I and alpha2,6-sialyltransferase I in human cutaneous epithelial lesions. Eur J Histochem. 2013;57(1):e7. https://doi.org/10.4081/ejh.2013.e7.

    Article  CAS  PubMed  Google Scholar 

  39. Ranjan A, Kalraiya RD. α2,6 Sialylation associated with increased β1,6-branched N-oligosaccharides influences cellular adhesion and invasion. J Biosci. 2013;38(5):867–76. https://doi.org/10.1007/s12038-013-9382-z.

    Article  CAS  PubMed  Google Scholar 

  40. Tu CF, Wu MY, Lin YC, Kannagi R, Yang RB. FUT8 promotes breast cancer cell invasiveness by remodeling TGF-beta receptor core fucosylation. Breast Cancer Res. 2017;19(1):111. https://doi.org/10.1186/s13058-017-0904-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang Y, Fukuda T, Isaji T, Lu J, Im S, Hang Q, et al. Loss of alpha1,6-fucosyltransferase inhibits chemical-induced hepatocellular carcinoma and tumorigenesis by down-regulating several cell signaling pathways. FASEB J. 2015;29(8):3217–27. https://doi.org/10.1096/fj.15-270710.

    Article  CAS  PubMed  Google Scholar 

  42. Ciolczyk-Wierzbicka D, Bodzioch M, Gil D, Zmudzinska D, Dembinska-Kiec A, Laidler P. Expression of fucosyltransferases contributes to melanoma invasive phenotype. Med Chem. 2007;3(5):418–24.

    Article  CAS  PubMed  Google Scholar 

  43. Lau E, Feng Y, Claps G, Fukuda MN, Perlina A, Donn D, et al. The transcription factor ATF2 promotes melanoma metastasis by suppressing protein fucosylation. Sci Signal. 2015;8(406):ra124. https://doi.org/10.1126/scisignal.aac6479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Agrawal P, Fontanals-Cirera B, Sokolova E, Jacob S, Vaiana CA, Argibay D, et al. A systems biology approach identifies FUT8 as a driver of melanoma metastasis. Cancer Cell. 2017;31(6):804–819.e7. https://doi.org/10.1016/j.ccell.2017.05.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Manabe Y, Kasahara S, Takakura Y, Yang X, Takamatsu S, Kamada Y, et al. Development of alpha1,6-fucosyltransferase inhibitors through the diversity-oriented syntheses of GDP-fucose mimics using the coupling between alkyne and sulfonyl azide. Bioorg Med Chem. 2017;25(11):2844–50. https://doi.org/10.1016/j.bmc.2017.02.036.

    Article  CAS  PubMed  Google Scholar 

  46. Moremen KW, Tiemeyer M, Nairn AV. Vertebrate protein glycosylation: diversity, synthesis and function. Nat Rev Mol Cell Biol. 2012;13(7):448–62. https://doi.org/10.1038/nrm3383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Apweiler R, Hermjakob H, Sharon N. On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochem Biophys Acta. 1999;1473(1):4–8.

    Article  CAS  PubMed  Google Scholar 

  48. Kirwan A, Utratna M, O’Dwyer ME, Joshi L, Kilcoyne M. Glycosylation-based serum biomarkers for cancer diagnostics and prognostics. Biomed Res Int. 2015;2015:490531. https://doi.org/10.1155/2015/490531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pandolfi F, Franza L, Altamura S, Mandolini C, Cianci R, Ansari A, et al. Integrins: integrating the biology and therapy of cell–cell interactions. Clin Ther. 2017;39(12):2420–36. https://doi.org/10.1016/j.clinthera.2017.11.002.

    Article  CAS  PubMed  Google Scholar 

  50. Oz OK, Campbell A, Tao TW. Reduced cell adhesion to fibronectin and laminin is associated with altered glycosylation of beta 1 integrins in a weakly metastatic glycosylation mutant. Int J Cancer. 1989;44(2):343–7.

    Article  CAS  PubMed  Google Scholar 

  51. Kawano T, Takasaki S, Tao TW, Kobata A. Altered glycosylation of beta 1 integrins associated with reduced adhesiveness to fibronectin and laminin. Int J Cancer. 1993;53(1):91–6.

    Article  CAS  PubMed  Google Scholar 

  52. Pochec E, Litynska A, Amoresano A, Casbarra A. Glycosylation profile of integrin alpha 3 beta 1 changes with melanoma progression. Biochem Biophys Acta. 2003;1643(1–3):113–23.

    Article  CAS  PubMed  Google Scholar 

  53. Isaji T, Gu J, Nishiuchi R, Zhao Y, Takahashi M, Miyoshi E, et al. Introduction of bisecting GlcNAc into integrin alpha5beta1 reduces ligand binding and down-regulates cell adhesion and cell migration. J Biol Chem. 2004;279(19):19747–54. https://doi.org/10.1074/jbc.M311627200.

    Article  CAS  PubMed  Google Scholar 

  54. Johnson JP. Cell adhesion molecules in the development and progression of malignant melanoma. Cancer Metastasis Rev. 1999;18(3):345–57.

    Article  CAS  PubMed  Google Scholar 

  55. Litynska A, Przybylo M, Pochec E, Kremser E, Hoja-Lukowicz D, Sulowska U. Does glycosylation of melanoma cells influence their interactions with fibronectin? Biochimie. 2006;88(5):527–34. https://doi.org/10.1016/j.biochi.2005.10.012.

    Article  CAS  PubMed  Google Scholar 

  56. Riethdorf S, Reimers N, Assmann V, Kornfeld JW, Terracciano L, Sauter G, et al. High incidence of EMMPRIN expression in human tumors. Int J Cancer. 2006;119(8):1800–10. https://doi.org/10.1002/ijc.22062.

    Article  CAS  PubMed  Google Scholar 

  57. Kanekura T, Chen X. CD147/basigin promotes progression of malignant melanoma and other cancers. J Dermatol Sci. 2010;57(3):149–54. https://doi.org/10.1016/j.jdermsci.2009.12.008.

    Article  CAS  PubMed  Google Scholar 

  58. Nishibaba R, Higashi Y, Su J, Furukawa T, Kawai K, Kanekura T. CD147-targeting siRNA inhibits cell–matrix adhesion of human malignant melanoma cells by phosphorylating focal adhesion kinase. J Dermatol. 2012;39(1):63–7. https://doi.org/10.1111/j.1346-8138.2011.01304.x.

    Article  CAS  PubMed  Google Scholar 

  59. Li J, Peng L, Wu L, Kuang Y, Su J, Yi M, et al. Depletion of CD147 sensitizes human malignant melanoma cells to hydrogen peroxide-induced oxidative stress. J Dermatol Sci. 2010;58(3):204–10. https://doi.org/10.1016/j.jdermsci.2010.03.022.

    Article  CAS  PubMed  Google Scholar 

  60. Zeng W, Su J, Wu L, Yang D, Long T, Li D, et al. CD147 promotes melanoma progression through hypoxia-induced MMP2 activation. Curr Mol Med. 2014;14(1):163–73.

    Article  CAS  PubMed  Google Scholar 

  61. Hatanaka M, Higashi Y, Fukushige T, Baba N, Kawai K, Hashiguchi T, et al. Cleaved CD147 shed from the surface of malignant melanoma cells activates MMP2 produced by fibroblasts. Anticancer Res. 2014;34(12):7091–6.

    CAS  PubMed  Google Scholar 

  62. Luo Z, Zeng W, Tang W, Long T, Zhang J, Xie X, et al. CD147 interacts with NDUFS6 in regulating mitochondrial complex I activity and the mitochondrial apoptotic pathway in human malignant melanoma cells. Curr Mol Med. 2014;14(10):1252–64.

    Article  CAS  PubMed  Google Scholar 

  63. Bai Y, Huang W, Ma LT, Jiang JL, Chen ZN. Importance of N-glycosylation on CD147 for its biological functions. Int J Mol Sci. 2014;15(4):6356–77. https://doi.org/10.3390/ijms15046356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Huang W, Luo WJ, Zhu P, Tang J, Yu XL, Cui HY, et al. Modulation of CD147-induced matrix metalloproteinase activity: role of CD147 N-glycosylation. Biochem J. 2013;449(2):437–48. https://doi.org/10.1042/bj20120343.

    Article  CAS  PubMed  Google Scholar 

  65. Li JH, Huang W, Lin P, Wu B, Fu ZG, Shen HM, et al. N-linked glycosylation at Asn152 on CD147 affects protein folding and stability: promoting tumour metastasis in hepatocellular carcinoma. Sci Rep. 2016;6:35210. https://doi.org/10.1038/srep35210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Liu S, Li S, Zhang Y, Wang Y, Zhu Y, Wang B, et al. Purification of a polyclonal antibody against CD147 for ELISA using antigenimmunoaffinity chromatography. Mol Med Rep. 2017;15(6):4035–40. https://doi.org/10.3892/mmr.2017.6523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cui J, Huang W, Wu B, Jin J, Jing L, Shi WP, et al. N-glycosylation by N-acetylglucosaminyltransferase V enhances the interaction of CD147/basigin with integrin beta1 and promotes HCC metastasis. J Pathol. 2018;245(1):41–52. https://doi.org/10.1002/path.5054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ru NY, Cui LB, Jiao B, Zhang L, Jiang S, Yu ZB. Glycosylated CD147 reduces myocardial collagen cross-linking in cardiac hypertrophy. J Cell Biochem. 2018;56:7. https://doi.org/10.1002/jcb.26713.

    Article  CAS  Google Scholar 

  69. Liu C, Qiu H, Lin D, Wang Z, Shi N, Tan Z, et al. c-Jun-dependent beta3GnT8 promotes tumorigenesis and metastasis of hepatocellular carcinoma by inducing CD147 glycosylation and altering N-glycan patterns. Oncotarget. 2018;9(26):18327–40. https://doi.org/10.18632/oncotarget.24192.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Herraiz C, Garcia-Borron JC, Jimenez-Cervantes C, Olivares C. MC1R signaling. Intracellular partners and pathophysiological implications. Biochimica Biophys Acta Mol Basis Dis. 2017;1863(10 Pt A):2448–61. https://doi.org/10.1016/j.bbadis.2017.02.027.

    Article  CAS  Google Scholar 

  71. Rodriguez CI, Setaluri V. Cyclic AMP (cAMP) signaling in melanocytes and melanoma. Arch Biochem Biophys. 2014;563:22–7. https://doi.org/10.1016/j.abb.2014.07.003.

    Article  CAS  PubMed  Google Scholar 

  72. Pasquali E, Garcia-Borron JC, Fargnoli MC, Gandini S, Maisonneuve P, Bagnardi V, et al. MC1R variants increased the risk of sporadic cutaneous melanoma in darker-pigmented Caucasians: a pooled-analysis from the M-SKIP project. Int J Cancer. 2015;136(3):618–31. https://doi.org/10.1002/ijc.29018.

    Article  CAS  PubMed  Google Scholar 

  73. Salazar-Onfray F, Lopez M, Lundqvist A, Aguirre A, Escobar A, Serrano A, et al. Tissue distribution and differential expression of melanocortin 1 receptor, a malignant melanoma marker. Br J Cancer. 2002;87(4):414–22. https://doi.org/10.1038/sj.bjc.6600441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Herraiz C, Sanchez-Laorden BL, Jimenez-Cervantes C, Garcia-Borron JC. N-glycosylation of the human melanocortin 1 receptor: occupancy of glycosylation sequons and functional role. Pigment Cell Melanoma Res. 2011;24(3):479–89. https://doi.org/10.1111/j.1755-148X.2011.00848.x.

    Article  CAS  PubMed  Google Scholar 

  75. Qu QX, Xie F, Huang Q, Zhang XG. Membranous and cytoplasmic expression of PD-L1 in ovarian cancer cells. Cell Physiol Biochem. 2017;43(5):1893–906. https://doi.org/10.1159/000484109.

    Article  CAS  PubMed  Google Scholar 

  76. Kondo K, Shaim H, Thompson PA, Burger JA, Keating M, Estrov Z, et al. Ibrutinib modulates the immunosuppressive CLL microenvironment through STAT3-mediated suppression of regulatory B-cell function and inhibition of the PD-1/PD-L1 pathway. Leukemia. 2017. https://doi.org/10.1038/leu.2017.304.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Geng Q, Jiao P, Jin P, Su G, Dong J, Yan B. PD-1/PD-L1 inhibitors for immuno-oncology: from antibodies to small molecules. Curr Pharm Des. 2017;56:67. https://doi.org/10.2174/1381612823666171004120152.

    Article  CAS  Google Scholar 

  78. Clark CA, Gupta HB, Sareddy G, Pandeswara S, Lao S, Yuan B, et al. Tumor-intrinsic PD-L1 signals regulate cell growth, pathogenesis, and autophagy in ovarian cancer and melanoma. Can Res. 2016;76(23):6964–74. https://doi.org/10.1158/0008-5472.can-16-0258.

    Article  CAS  Google Scholar 

  79. Fessas P, Lee H, Ikemizu S, Janowitz T. A molecular and preclinical comparison of the PD-1-targeted T-cell checkpoint inhibitors nivolumab and pembrolizumab. Semin Oncol. 2017;44(2):136–40. https://doi.org/10.1053/j.seminoncol.2017.06.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Pollack MH, Betof A, Dearden H, Rapazzo K, Valentine I, Brohl AS, et al. Safety of resuming anti-PD-1 in patients with immune-related adverse events (irAEs) during combined anti-CTLA-4 and anti-PD1 in metastatic melanoma. Ann Oncol. 2017. https://doi.org/10.1093/annonc/mdx642.

    Article  PubMed Central  Google Scholar 

  81. Li CW, Lim SO, Xia W, Lee HH, Chan LC, Kuo CW, et al. Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nat Commun. 2016;7:12632. https://doi.org/10.1038/ncomms12632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tan S, Zhang H, Chai Y, Song H, Tong Z, Wang Q, et al. An unexpected N-terminal loop in PD-1 dominates binding by nivolumab. Nat Commun. 2017;8:14369. https://doi.org/10.1038/ncomms14369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kyriakopoulou K, Kefali E, Piperigkou Z, Bassiony H, Karamanos NK. Advances in targeting epidermal growth factor receptor signaling pathway in mammary cancer. Cell Signal. 2018;51:99–109. https://doi.org/10.1016/j.cellsig.2018.07.010.

    Article  CAS  PubMed  Google Scholar 

  84. Kanemura H, Fukushima S, Yamashita J, Jinnin M, Sakai K, Masuguchi S, et al. Serum epidermal growth factor receptor levels in patients with malignant melanoma. Clin Exp Dermatol. 2013;38(2):172–7. https://doi.org/10.1111/ced.12022.

    Article  CAS  PubMed  Google Scholar 

  85. Kenessey I, Kramer Z, Istvan L, Cserepes MT, Garay T, Hegedus B, et al. Inhibition of epidermal growth factor receptor improves antitumor efficacy of vemurafenib in BRAF-mutant human melanoma in preclinical model. Melanoma Res. 2018. https://doi.org/10.1097/cmr.0000000000000488.

    Article  PubMed  Google Scholar 

  86. Takahashi M, Hasegawa Y, Gao C, Kuroki Y, Taniguchi N. N-glycans of growth factor receptors: their role in receptor function and disease implications. Clin Sci. 2016;130(20):1781–92. https://doi.org/10.1042/cs20160273.

    Article  CAS  Google Scholar 

  87. Kaszuba K, Grzybek M, Orlowski A, Danne R, Rog T, Simons K, et al. N-Glycosylation as determinant of epidermal growth factor receptor conformation in membranes. Proc Natl Acad Sci USA. 2015;112(14):4334–9. https://doi.org/10.1073/pnas.1503262112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Azimzadeh Irani M, Kannan S, Verma C. Role of N-glycosylation in EGFR ectodomain ligand binding. Proteins. 2017;85(8):1529–49. https://doi.org/10.1002/prot.25314.

    Article  CAS  PubMed  Google Scholar 

  89. Yokoe S, Takahashi M, Asahi M, Lee SH, Li W, Osumi D, et al. The Asn418-linked N-glycan of ErbB3 plays a crucial role in preventing spontaneous heterodimerization and tumor promotion. Can Res. 2007;67(5):1935–42. https://doi.org/10.1158/0008-5472.can-06-3023.

    Article  CAS  Google Scholar 

  90. Whitson KB, Whitson SR, Red-Brewer ML, McCoy AJ, Vitali AA, Walker F, et al. Functional effects of glycosylation at Asn-579 of the epidermal growth factor receptor. Biochemistry. 2005;44(45):14920–31. https://doi.org/10.1021/bi050751j.

    Article  CAS  PubMed  Google Scholar 

  91. Liu YC, Yen HY, Chen CY, Chen CH, Cheng PF, Juan YH, et al. Sialylation and fucosylation of epidermal growth factor receptor suppress its dimerization and activation in lung cancer cells. Proc Natl Acad Sci USA. 2011;108(28):11332–7. https://doi.org/10.1073/pnas.1107385108.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Yen HY, Liu YC, Chen NY, Tsai CF, Wang YT, Chen YJ, et al. Effect of sialylation on EGFR phosphorylation and resistance to tyrosine kinase inhibition. Proc Natl Acad Sci USA. 2015;112(22):6955–60. https://doi.org/10.1073/pnas.1507329112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Britain CM, Holdbrooks AT, Anderson JC, Willey CD, Bellis SL. Sialylation of EGFR by the ST6Gal-I sialyltransferase promotes EGFR activation and resistance to gefitinib-mediated cell death. J Ovarian Res. 2018;11(1):12. https://doi.org/10.1186/s13048-018-0385-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Singh M, Jadhav HR. Targeting non-small cell lung cancer with small-molecule EGFR tyrosine kinase inhibitors. Drug Discov Today. 2017. https://doi.org/10.1016/j.drudis.2017.10.004.

    Article  PubMed  Google Scholar 

  95. Udupa KS, Rajendranath R, Sagar T, Thomas J. Differential toxicities of tyrosine kinase inhibitors in the management of metastatic lung cancer. Indian J Med Paediatr Oncol. 2017;38(1):15–7. https://doi.org/10.4103/0971-5851.203502.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Program for the Major International (Regional) Joint Research Program of China (No. 81620108024) and the National Natural Science foundation of China (Nos. 81572679, 81472882, 81430075, 81772917).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cong Peng or Xiang Chen.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, L., Chen, X., Zhang, X. et al. N-Glycosylation in progression of skin cancer. Med Oncol 36, 50 (2019). https://doi.org/10.1007/s12032-019-1270-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-019-1270-4

Keywords

Navigation