Skip to main content
Log in

Comparison of 1p and 19q status of glioblastoma by whole exome sequencing, array-comparative genomic hybridization, and fluorescence in situ hybridization

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

According to the 2016 World Health Organization classification of tumors of the central nervous system, detecting 1p/19q co-deletion became essential in clinical neuropathology for gliomas with oligodendroglioma-like morphology. Here, we assessed genomic profiles of glioblastoma in 80 cases including 1p/19q status using fluorescent in situ hybridization (FISH), array-comparative genomic hybridization (aCGH), and/or whole exome sequencing (WES). Paraffin-embedded tumor tissues were subjected to FISH analysis, and the corresponding frozen tissues from the same tumors were evaluated for aCGH and/or WES for 1p/19q co-deletion and other genetic parameters, which included IDH1-R132H, ATRX, TP53, CIC, and NOTCH1 mutations and MGMT methylation status. We also evaluated correlations between 1p/19q co-deletion status and molecular markers or clinical outcomes. The FISH analyses revealed 1p/19q co-deletion in two cases, isolated deletion of 1p in six cases, and 19q in two cases, whereas the aCGH and WES results showed isolated deletion of 19q in four cases and 19 monosomy in only one case. Eleven cases showed discordant 1p/19q results between aCGH/WES and FISH analysis, and in most of them, 1p and/or 19q deletion on FISH analysis corresponded to the partial deletions at 1p36 and/or 19q13 on aCGH/WES. Our cohort exhibited IDH1-R132H mutations (5.4%), MGMT promotor methylation (34.6%), and mutations in ATRX (9.5%), TP53 (33.3%), and NOTCH1 (3.8%) but not in CIC (0%). In addition, MGMT methylation and ATRX mutation were significantly associated with clinical prognosis. In glioblastomas, partial deletions of 1p36 and/or 19q13 were uncommon, some of which appeared as 1p and/or 19q deletions on FISH analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ostrom QT, Gittleman H, Liao P, Rouse C, Chen Y, Dowling J, et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro-oncology. 2014;16(Suppl 4):vi1–63. https://doi.org/10.1093/neuonc/nou223.

    Article  Google Scholar 

  2. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131(6):803–20. https://doi.org/10.1007/s00401-016-1545-1.

    Article  PubMed  Google Scholar 

  3. Ohgaki H, Kleihues P. The definition of primary and secondary glioblastoma. Clinical Cancer Res Off J Am Assoc Cancer Res. 2013;19(4):764–72. https://doi.org/10.1158/1078-0432.ccr-12-3002.

    Article  CAS  Google Scholar 

  4. Li R, Li H, Yan W, Yang P, Bao Z, Zhang C, et al. Genetic and clinical characteristics of primary and secondary glioblastoma is associated with differential molecular subtype distribution. Oncotarget. 2015;6(9):7318–24. https://doi.org/10.18632/oncotarget.3440.

    PubMed  PubMed Central  Google Scholar 

  5. Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, et al. IDH1 and IDH2 mutations in gliomas. New Engl J Med. 2009;360(8):765–73. https://doi.org/10.1056/NEJMoa0808710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nobusawa S, Watanabe T, Kleihues P, Ohgaki H. IDH1 mutations as molecular signature and predictive factor of secondary glioblastomas. Clinical Cancer Res. 2009;15(19):6002–7. https://doi.org/10.1158/1078-0432.ccr-09-0715.

    Article  CAS  Google Scholar 

  7. Liu XY, Gerges N, Korshunov A, Sabha N, Khuong-Quang DA, Fontebasso AM, et al. Frequent ATRX mutations and loss of expression in adult diffuse astrocytic tumors carrying IDH1/IDH2 and TP53 mutations. Acta Neuropathol. 2012;124(5):615–25. https://doi.org/10.1007/s00401-012-1031-3.

    Article  CAS  PubMed  Google Scholar 

  8. Yip S, Butterfield YS, Morozova O, Chittaranjan S, Blough MD, An J, et al. Concurrent CIC mutations, IDH mutations, and 1p/19q loss distinguish oligodendrogliomas from other cancers. J Pathol. 2012;226(1):7–16. https://doi.org/10.1002/path.2995.

    Article  CAS  PubMed  Google Scholar 

  9. Narayanappa R, Rout P, Aithal MG, Chand AK. Aberrant expression of Notch1, HES1, and DTX1 genes in glioblastoma formalin-fixed paraffin-embedded tissues. Tumour Biol. 2016;37(5):6935–42. https://doi.org/10.1007/s13277-015-4592-7.

    Article  CAS  PubMed  Google Scholar 

  10. Ohgaki H, Dessen P, Jourde B, Horstmann S, Nishikawa T, Di Patre PL, et al. Genetic pathways to glioblastoma: a population-based study. Cancer Res. 2004;64(19):6892–9. https://doi.org/10.1158/0008-5472.can-04-1337.

    Article  CAS  PubMed  Google Scholar 

  11. Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, et al. An integrated genomic analysis of human glioblastoma multiforme. Science (New York, NY). 2008;321(5897):1807–12. https://doi.org/10.1126/science.1164382.

    Article  CAS  Google Scholar 

  12. Gelpi E, Ambros IM, Birner P, Luegmayr A, Drlicek M, Fischer I, et al. Fluorescent in situ hybridization on isolated tumor cell nuclei: a sensitive method for 1p and 19q deletion analysis in paraffin-embedded oligodendroglial tumor specimens. Mod Pathol. 2003;16(7):708–15. https://doi.org/10.1097/01.mp.0000076981.90281.bf.

    Article  PubMed  Google Scholar 

  13. Wesseling P, van den Bent M, Perry A. Oligodendroglioma: pathology, molecular mechanisms and markers. Acta Neuropathol. 2015;129(6):809–27. https://doi.org/10.1007/s00401-015-1424-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Griffin CA, Burger P, Morsberger L, Yonescu R, Swierczynski S, Weingart JD, et al. Identification of der(1;19)(q10;p10) in five oligodendrogliomas suggests mechanism of concurrent 1p and 19q loss. J Neuropathol Exp Neurol. 2006;65(10):988–94. https://doi.org/10.1097/01.jnen.0000235122.98052.8f.

    Article  PubMed  Google Scholar 

  15. Jenkins RB, Blair H, Ballman KV, Giannini C, Arusell RM, Law M, et al. A t(1;19)(q10;p10) mediates the combined deletions of 1p and 19q and predicts a better prognosis of patients with oligodendroglioma. Can Res. 2006;66(20):9852–61. https://doi.org/10.1158/0008-5472.can-06-1796.

    Article  CAS  Google Scholar 

  16. Pinkham MB, Telford N, Whitfield GA, Colaco RJ, O’Neill F, McBain CA. FISHing tips: what every clinician should know about 1p19q analysis in gliomas using fluorescence in situ hybridisation. Clin Oncol (Royal College of Radiologists (Great Britain)). 2015;27(8):445–53. https://doi.org/10.1016/j.clon.2015.04.008.

    Article  CAS  Google Scholar 

  17. Chaturbedi A, Yu L, Linskey ME, Zhou YH. Detection of 1p19q deletion by real-time comparative quantitative PCR. Biomarker Insights. 2012;7:9–17. https://doi.org/10.4137/bmi.s9003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jha P, Sarkar C, Pathak P, Sharma MC, Kale SS, Gupta D, et al. Detection of allelic status of 1p and 19q by microsatellite-based PCR versus FISH: limitations and advantages in application to patient management. Diagn Mol Pathol. 2011;20(1):40–7. https://doi.org/10.1097/PDM.0b013e3181e961e9.

    Article  PubMed  Google Scholar 

  19. Cowell JK, Barnett GH, Nowak NJ. Characterization of the 1p/19q chromosomal loss in oligodendrogliomas using comparative genomic hybridization arrays (CGHa). J Neuropathol Exp Neurol. 2004;63(2):151–8.

    Article  CAS  PubMed  Google Scholar 

  20. Clark KH, Villano JL, Nikiforova MN, Hamilton RL, Horbinski C. 1p/19q testing has no significance in the workup of glioblastomas. Neuropathol Appl Neurobiol. 2013;39(6):706–17. https://doi.org/10.1111/nan.12031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kaneshiro D, Kobayashi T, Chao ST, Suh J, Prayson RA. Chromosome 1p and 19q deletions in glioblastoma multiforme. Appl Immunohistochem Mol Morphol. 2009;17(6):512–6. https://doi.org/10.1097/PAI.0b013e3181a2c6a4.

    Article  CAS  PubMed  Google Scholar 

  22. Nagasaka T, Gunji M, Hosokai N, Hayashi K, Ikeda H, Ito M, et al. FISH 1p/19q deletion/imbalance for molecular subclassification of glioblastoma. Brain Tumor Pathol. 2007;24(1):1–5. https://doi.org/10.1007/s10014-006-0209-6.

    Article  PubMed  Google Scholar 

  23. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25(14):1754–60. https://doi.org/10.1093/bioinformatics/btp324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–9. https://doi.org/10.1093/bioinformatics/btp352.

    Article  PubMed  PubMed Central  Google Scholar 

  25. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297–303. https://doi.org/10.1101/gr.107524.110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011;43(5):491–8. https://doi.org/10.1038/ng.806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Molinari C, Iorio P, Medri L, Ballardini M, Guiducci G, Cremonini AM, et al. Chromosome 1p and 19q evaluation in low-grade oligodendrogliomas: a descriptive study. Int J Mol Med. 2010;25(1):145–51.

    PubMed  Google Scholar 

  28. Smith JS, Alderete B, Minn Y, Borell TJ, Perry A, Mohapatra G, et al. Localization of common deletion regions on 1p and 19q in human gliomas and their association with histological subtype. Oncogene. 1999;18(28):4144–52. https://doi.org/10.1038/sj.onc.1202759.

    Article  CAS  PubMed  Google Scholar 

  29. Dhami P, Coffey AJ, Abbs S, Vermeesch JR, Dumanski JP, Woodward KJ, et al. Exon array CGH: detection of copy-number changes at the resolution of individual exons in the human genome. Am J Hum Genet. 2005;76(5):750–62. https://doi.org/10.1086/429588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ambros PF, Ambros IM. Pathology and biology guidelines for resectable and unresectable neuroblastic tumors and bone marrow examination guidelines. Med Pediatr Oncol. 2001;37(6):492–504.

    Article  CAS  PubMed  Google Scholar 

  31. Homma T, Fukushima T, Vaccarella S, Yonekawa Y, Di Patre PL, Franceschi S, et al. Correlation among pathology, genotype, and patient outcomes in glioblastoma. J Neuropathol Exp Neurol. 2006;65(9):846–54. https://doi.org/10.1097/01.jnen.0000235118.75182.94.

    Article  CAS  PubMed  Google Scholar 

  32. Houillier C, Lejeune J, Benouaich-Amiel A, Laigle-Donadey F, Criniere E, Mokhtari K, et al. Prognostic impact of molecular markers in a series of 220 primary glioblastomas. Cancer. 2006;106(10):2218–23. https://doi.org/10.1002/cncr.21819.

    Article  CAS  PubMed  Google Scholar 

  33. Schmidt MC, Antweiler S, Urban N, Mueller W, Kuklik A, Meyer-Puttlitz B, et al. Impact of genotype and morphology on the prognosis of glioblastoma. J Neuropathol Exp Neurol. 2002;61(4):321–8.

    Article  CAS  PubMed  Google Scholar 

  34. Appin CL, Brat DJ. Molecular pathways in gliomagenesis and their relevance to neuropathologic diagnosis. Adv Anat Pathol. 2015;22(1):50–8. https://doi.org/10.1097/pap.0000000000000048.

    Article  CAS  PubMed  Google Scholar 

  35. Crespo I, Vital AL, Gonzalez-Tablas M, Patino Mdel C, Otero A, Lopes MC, et al. Molecular and genomic alterations in glioblastoma multiforme. Am J Pathol. 2015;185(7):1820–33. https://doi.org/10.1016/j.ajpath.2015.02.023.

    Article  CAS  PubMed  Google Scholar 

  36. Appin CL, Brat DJ. Biomarker-driven diagnosis of diffuse gliomas. Mol Asp Med. 2015;45:87–96. https://doi.org/10.1016/j.mam.2015.05.002.

    Article  CAS  Google Scholar 

  37. Siegal T. Clinical impact of molecular biomarkers in gliomas. J Clin Neurosci. 2015;22(3):437–44. https://doi.org/10.1016/j.jocn.2014.10.004.

    Article  CAS  PubMed  Google Scholar 

  38. Takano S, Ishikawa E, Sakamoto N, Matsuda M, Akutsu H, Noguchi M, et al. Immunohistochemistry on IDH 1/2, ATRX, p53 and Ki-67 substitute molecular genetic testing and predict patient prognosis in grade III adult diffuse gliomas. Brain Tumor Pathol. 2016;33(2):107–16. https://doi.org/10.1007/s10014-016-0260-x.

    Article  CAS  PubMed  Google Scholar 

  39. Brandner S, von Deimling A. Diagnostic, prognostic and predictive relevance of molecular markers in gliomas. Neuropathol Appl Neurobiol. 2015;41(6):694–720. https://doi.org/10.1111/nan.12246.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant of the Korea Health Technology R&D project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health and Welfare, Republic of Korea (HI14C3418).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeon-Lim Suh.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sim, J., Nam, DH., Kim, Y. et al. Comparison of 1p and 19q status of glioblastoma by whole exome sequencing, array-comparative genomic hybridization, and fluorescence in situ hybridization. Med Oncol 35, 60 (2018). https://doi.org/10.1007/s12032-018-1119-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-018-1119-2

Keywords

Navigation