Skip to main content

Advertisement

Log in

27-Hydroxycholesterol stimulates cell proliferation and resistance to docetaxel-induced apoptosis in prostate epithelial cells

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Although the causes of prostate cancer (PCa) and benign prostatic hyperplasia (BPH) are not known, the role of oxidative stress, aging, and diet are suspected to increase the incidence of prostate complications. The cholesterol oxidation derivative (oxysterol) 27-hydroxycholesterol (27-OHC) is the most prevalent cholesterol metabolite in the blood. As aging, oxidative stress, and hypercholesterolemia are associated with increased risk of PCa and BPH, and because 27-OHC levels are also increased with aging, hypercholesterolemia, and oxidative stress, determining the role of 27-OHC in the progression of PCas and BPH is warranted. In this study, we determined the effect of 27-OHC in human prostate epithelial cells RWPE-1. We found that 27-OHC stimulates proliferation and increases androgen receptor (AR) transcriptional activity. 27-OHC also increased prostate-specific antigen expression and enhanced AR binding to the androgen response element compared to controls. Silencing AR expression with siRNA markedly reduced the 27-OHC-induced proliferation. Furthermore, 27-OHC blocked docetaxel-induced apoptosis. Altogether, our results suggest that 27-OHC may play an important role in PCa and BPH progression by promoting proliferation and suppressing apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Guess HA, Arrighi HM, Metter EJ, Fozard JL. Cumulative prevalence of prostatism matches the autopsy prevalence of benign prostatic hyperplasia. Prostate. 1990;17:241–6.

    Article  CAS  PubMed  Google Scholar 

  2. Delongchamps NB, Singh A, Haas GP. The role of prevalence in the diagnosis of prostate cancer. Cancer Control. 2006;13:158–68.

    PubMed  Google Scholar 

  3. Chokkalingam AP, Nyrén O, Johansson J-E, Gridley G, McLaughlin JK, Adami H-O, et al. Prostate carcinoma risk subsequent to diagnosis of benign prostatic hyperplasia: a population-based cohort study in Sweden. Cancer. 2003;98:1727–34.

    Article  PubMed  Google Scholar 

  4. Ørsted DD, Bojesen SE. The link between benign prostatic hyperplasia and prostate cancer. Nat Rev Urol. 2013;10:49–54.

    Article  PubMed  Google Scholar 

  5. White CP. On the occurrence of crystals in tumours. J Pathol Bacteriol. 1909;13:3–10.

    Article  Google Scholar 

  6. Mondul AM, Clipp SL, Helzlsouer KJ, Platz EA. Association between plasma total cholesterol concentration and incident prostate cancer in the CLUE II cohort. Cancer Causes Control. 2010;21:61–8.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Breau RH, Karnes RJ, Jacobson DJ, McGree ME, Jacobsen SJ, Nehra A, et al. The association between statin use and the diagnosis of prostate cancer in a population based cohort. J Urol. 2010;184:494–9.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Papadopoulos G, Delakas D, Nakopoulou L, Kassimatis T. Statins and prostate cancer: molecular and clinical aspects. Eur J Cancer. 2011;47:819–30.

    Article  CAS  PubMed  Google Scholar 

  9. Lee SH, Park TJ, Bae MH, Choi SH, Cho YS, Joo KJ, et al. Impact of treatment with statins on prostate-specific antigen and prostate volume in patients with benign prostatic hyperplasia. Korean J Urol. 2013;54:750–5.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Nelson ER, Wardell SE, Jasper JS, Park S, Suchindran S, Howe MK, et al. 27-Hydroxycholesterol links hypercholesterolemia and breast cancer pathophysiology. Science. 2013;342:1094–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Hirayama T, Mizokami Y, Honda A, Homma Y, Ikegami T, Saito Y, et al. Serum concentration of 27-hydroxycholesterol predicts the effects of high-cholesterol diet on plasma LDL cholesterol level. Hepatol Res. 2009;39:149–56.

    Article  CAS  PubMed  Google Scholar 

  12. Umetani M, Shaul PW. 27-Hydroxycholesterol: the first identified endogenous SERM. Trends Endocrinol Metab. 2011;22:130–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. DuSell CD, Umetani M, Shaul PW, Mangelsdorf DJ, McDonnell DP. 27-Hydroxycholesterol is an endogenous selective estrogen receptor modulator. Mol Endocrinol. 2008;22:65–77.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Fu X, Menke JG, Chen Y, Zhou G, MacNaul KL, Wright SD, et al. 27-Hydroxycholesterol is an endogenous ligand for liver X receptor in cholesterol-loaded cells. J Biol Chem. 2001;276:38378–87.

    Article  CAS  PubMed  Google Scholar 

  15. Cruz P, Torres C, Ramírez ME, Epuñán MJ, Valladares LE, Sierralta WD. Proliferation of human mammary cancer cells exposed to 27-hydroxycholesterol. Exp Ther Med. 2010;1:531–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Wu Q, Ishikawa T, Sirianni R, Tang H, McDonald JG, Yuhanna IS, et al. 27-Hydroxycholesterol promotes cell-autonomous, ER-positive breast cancer growth. Cell Rep. 2013;5:637–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Horie-Inoue K, Bono H, Okazaki Y, Inoue S. Identification and functional analysis of consensus androgen response elements in human prostate cancer cells. Biochem Biophys Res Commun. 2004;325:1312–7.

    Article  CAS  PubMed  Google Scholar 

  18. Nelson ER, DuSell CD, Wang X, Howe MK, Evans G, Michalek RD, et al. The oxysterol, 27-hydroxycholesterol, links cholesterol metabolism to bone homeostasis through its actions on the estrogen and liver X receptors. Endocrinology. 2011;152:4691–705.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Ma D, Liu W, Wang Y. ApoA-I or ABCA1 expression suppresses fatty acid synthesis by reducing 27-hydroxycholesterol levels. Biochimie. 2014;103:101–8.

    Article  CAS  PubMed  Google Scholar 

  20. Burkard I, von Eckardstein A, Waeber G, Vollenweider P, Rentsch KM. Lipoprotein distribution and biological variation of 24S- and 27-hydroxycholesterol in healthy volunteers. Atherosclerosis. 2007;194:71–8.

    Article  PubMed  Google Scholar 

  21. Dzeletovic S, Breuer O, Lund E, Diczfalusy U. Determination of cholesterol oxidation products in human plasma by isotope dilution-mass spectrometry. Anal Biochem. 1995;225:73–80.

    Article  CAS  PubMed  Google Scholar 

  22. Umetani M, Domoto H, Gormley AK, Yuhanna IS, Cummins CL, Javitt NB, et al. 27-Hydroxycholesterol is an endogenous SERM that inhibits the cardiovascular effects of estrogen. Nat Med. 2007;13:1185–92.

    Article  CAS  PubMed  Google Scholar 

  23. DuSell CD, Nelson ER, Wang X, Abdo J, Mödder UI, Umetani M, et al. The endogenous selective estrogen receptor modulator 27-hydroxycholesterol is a negative regulator of bone homeostasis. Endocrinology. 2010;151:3675–85.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Marwarha G, Ghribi O. Does the oxysterol 27-hydroxycholesterol underlie Alzheimer’s disease-Parkinson’s disease overlap? Exp Gerontol. 2015;68:13–8.

    Article  CAS  PubMed  Google Scholar 

  25. Brown AJ, Jessup W. Oxysterols and atherosclerosis. Atherosclerosis. 1999;142:1–28.

    Article  CAS  PubMed  Google Scholar 

  26. Schüle R, Siddique T, Deng H-X, Yang Y, Donkervoort S, Hansson M, et al. Marked accumulation of 27-hydroxycholesterol in SPG5 patients with hereditary spastic paresis. J Lipid Res. 2010;51:819–23.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Meaney S, Lütjohann D, Diczfalusy U, Björkhem I. Formation of oxysterols from different pools of cholesterol as studied by stable isotope technique: cerebral origin of most circulating 24S-hydroxycholesterol in rats, but not in mice. Biochim Biophys Acta. 2000;1486:293–8.

    Article  CAS  PubMed  Google Scholar 

  28. Meaney S, Hassan M, Sakinis A, Lütjohann D, von Bergmann K, Wennmalm A, et al. Evidence that the major oxysterols in human circulation originate from distinct pools of cholesterol: a stable isotope study. J Lipid Res. 2001;42:70–8.

    CAS  PubMed  Google Scholar 

  29. Ramirez DMO, Andersson S, Russell DW. Neuronal expression and subcellular localization of cholesterol 24-hydroxylase in the mouse brain. J Comp Neurol. 2008;507:1676–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Bandaru VVR, Haughey NJ. Quantitative detection of free 24S-hydroxycholesterol, and 27-hydroxycholesterol from human serum. BMC Neurosci. 2014;15:137.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Cruz P, Epuñán MJ, Ramírez ME, Torres CG, Valladares LE, Sierralta WD. 27-hydroxycholesterol and the expression of three estrogen-sensitive proteins in MCF7 cells. Oncol Rep. 2012;28:992–8.

    CAS  PubMed  Google Scholar 

  32. Heinlein CA, Chang C. Androgen receptor in prostate cancer. Endocr Rev. 2004;25:276–308.

    Article  CAS  PubMed  Google Scholar 

  33. Lonergan PE, Tindall DJ. Androgen receptor signaling in prostate cancer development and progression. J Carcinog. 2011;10:20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Chen Y, Clegg NJ, Scher HI. Anti-androgens and androgen-depleting therapies in prostate cancer: new agents for an established target. Lancet Oncol. 2009;10:981–91.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Lu T, Lin W-J, Izumi K, Wang X, Xu D, Fang L-Y, et al. Targeting androgen receptor to suppress macrophage-induced EMT and benign prostatic hyperplasia (BPH) development. Mol Endocrinol. 2012;26:1707–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Izumi K, Mizokami A, Lin W-J, Lai K-P, Chang C. Androgen receptor roles in the development of benign prostate hyperplasia. Am J Pathol. 2013;182:1942–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Saxena P, Trerotola M, Wang T, Li J, Sayeed A, Vanoudenhove J, et al. PSA regulates androgen receptor expression in prostate cancer cells. Prostate. 2012;72:769–76.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Kim J, Coetzee GA. Prostate specific antigen gene regulation by androgen receptor. J Cell Biochem. 2004;93:233–41.

    Article  CAS  PubMed  Google Scholar 

  39. Hipfner DR, Cohen SM. Connecting proliferation and apoptosis in development and disease. Nat Rev Mol Cell Biol. 2004;5:805–15.

    Article  CAS  PubMed  Google Scholar 

  40. Mhaidat NM, Thorne RF, Zhang XD, Hersey P. Regulation of docetaxel-induced apoptosis of human melanoma cells by different isoforms of protein kinase C. Mol Cancer Res. 2007;5:1073–81.

    Article  CAS  PubMed  Google Scholar 

  41. Petrylak DP. The treatment of hormone-refractory prostate cancer: docetaxel and beyond. Rev Urol. 2006;8(Suppl 2):S48–55.

    PubMed Central  PubMed  Google Scholar 

  42. Kellokumpu-Lehtinen P-L, Harmenberg U, Joensuu T, McDermott R, Hervonen P, Ginman C, et al. 2-Weekly versus 3-weekly docetaxel to treat castration-resistant advanced prostate cancer: a randomised, phase 3 trial. Lancet Oncol. 2013;14:117–24.

    Article  CAS  PubMed  Google Scholar 

  43. McKeage K, Keam SJ. Docetaxel in hormone-refractory metastatic prostate cancer. Drugs. 2005;65:2287–94 (discussion 2295–7).

    Article  CAS  PubMed  Google Scholar 

  44. Karanika S, Karantanos T, Kurosaka S, Wang J, Hirayama T, Yang G, et al. GLIPR1-ΔTM synergizes with docetaxel in cell death and suppresses resistance to docetaxel in prostate cancer cells. Mol Cancer. 2015;14:122.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by University of North Dakota School of Medicine seed grant to Othman Ghribi. The funding source had no involvement in the study design, collection, analysis or interpretation of data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Othman Ghribi.

Ethics declarations

Conflict of interest

None.

Additional information

Disclaimer: This material is the result of work supported with resources and the use of facilities at the Fargo VA Medical Center. The contents do not represent the views of the Department of Veterans Affairs or the United States Government.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raza, S., Meyer, M., Schommer, J. et al. 27-Hydroxycholesterol stimulates cell proliferation and resistance to docetaxel-induced apoptosis in prostate epithelial cells. Med Oncol 33, 12 (2016). https://doi.org/10.1007/s12032-015-0725-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-015-0725-5

Keywords

Navigation