Skip to main content

Advertisement

Log in

Anticancer effect of realgar nanoparticles on mouse melanoma skin cancer in vivo via transdermal drug delivery

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Realgar has been used successfully to treat diseases for thousands of years, but its poor water solubility and high toxicity hampered its further medical uses. Here, we first applied transdermal drug delivery system to deliver realgar nanoparticles to investigate its anticancer effect and toxicity in vivo. In this study, MTT assay and flow cytometry analysis demonstrated that realgar significantly suppressed the proliferation and induced apoptosis of B16 melanoma cells in a dose-dependent manner. Transdermal penetration studies in vitro showed realgar nanoparticles could be delivered efficiently through skin. Tests on tumor-bearing C57BL/6 mice displayed that realgar could decrease the tumor volume markedly via transdermal drug delivery compared with the intraperitoneal administration and the control. Hematoxylin–eosin and immunohistochemical staining revealed that it could inhibit angiogenesis. The monitoring of the hepatic injury, body weight, feeding behavior, motor activity, and skin irritation of each animal indicated little toxicity of realgar to mice. The results demonstrated that realgar nanoparticles can be dermally delivered to achieve high efficacy against menaloma in vivo with low toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lens MB, Dawes M. Global perspectives of contemporary epidemiological trends of cutaneous malignant melanoma. Br J Dermatol. 2004;150:179–85. doi:10.1111/j.1365-2133.2004.05708.x.

    Article  CAS  PubMed  Google Scholar 

  2. Jemal A, Siegel R, Ward E, Murray T, Xu JQ, Thun MJ. Cancer statistics, 2007. CA Cancer J Clin. 2007;57:43–66. doi:10.3322/canjclin.57.1.43.

    Article  PubMed  Google Scholar 

  3. Yang L, Parkin DM, Ferlay J, Li L, Chen YD. Estimates of cancer incidence in China for 2000 and projections for 2005. Cancer Epidemiol Biomarkers Prev. 2005;14:243–50. doi:10.1158/1055-9965.EPI-04-0680.

    Article  PubMed  Google Scholar 

  4. Anonymous. The inner canon of Emperor Huang. Beijing: Chinese Medical Ancient Books Publishing House; 2003.

  5. The Cooperation Group of Phase II Clinical Trial of Compound Huangdai Tablet, Qian LS, Zhao YZ. Phase II clinical trial of compound Huangdai tablet in newly diagnosed acute promyelocytic leukemia. Chin J Hematol. 2006;27:801–4.

    Google Scholar 

  6. Frankenberger WT. Environmental chemistry of arsenic. 1st ed. New York: Marcel Dekker Inc; 2002.

    Google Scholar 

  7. Lu DP, Wang Q. Current study of APL treatment in China. Int J Hematol. 2002;76:316–8.

    Article  PubMed  Google Scholar 

  8. Lu DP, Qiu JY, Jiang B, Wang Q, Liu KY, Liu YR, et al. Tetra-arsenic tetra-sulfide for the treatment of acute promyelocytic leukemia: a pilot report. Blood. 2002;99:3136–43. doi:10.1182/blood.V99.9.3136.

    Article  CAS  PubMed  Google Scholar 

  9. Zhu J, Chen Z, Lallemand-Breitenbach V, de The′ H. How acute promyelocytic leukaemia revived arsenic. Nat Rev Cancer. 2002;2:705–13. doi:10.1038/nrc887.

    Article  CAS  PubMed  Google Scholar 

  10. Deng Y, Xu HB, Huang KX, Yang XL, Xie CS, Wu J. Size effects of realgar particles on apoptosis in a human umbilical vein endothelial cell line: ecv-304. Pharmacol Res. 2001;44:513–8. doi:10.1006/phrs.2001.0885.

    Article  CAS  PubMed  Google Scholar 

  11. Wang XB, Xi RG, Zhang ZR, Wang JG, Yao W. Study on pharmacokinetics of nanoparticle realgar powders in rabbit (in Chinese). Pharmaceutical J PLA. 2002;18:324–6.

    Google Scholar 

  12. Liu J, Lu YF, Wu Q, Goyer RA, Waalkes MP. Mineral arsenicals in traditional medicines: orpiment, realgar, and arsenolite. J Pharmaco Exp Ther. 2008;326:363–8. doi:10.1124/jpet.108.139543.

    Article  CAS  Google Scholar 

  13. Hu J, Fang J, Dong Y, Chen SJ, Chen Z. Arsenic in cancer therapy. Anti-cancer Drug. 2005;16:119–26. doi:10.1097/00001813-200502000-00002.

    Article  CAS  Google Scholar 

  14. Prausnitz MR, Mitragotri S, Langer R. Current status and future potential of transdermal drug delivery. Nat Rev Drug Discov. 2004;3:115–24. doi:10.1038/nrd1304.

    Article  CAS  PubMed  Google Scholar 

  15. Thomas BJ, Finnin BC. The transdermal revolution. Drug Discov Today. 2004;9:697–703. doi:10.1016/S1359-6446(04)03180-0.

    Article  CAS  PubMed  Google Scholar 

  16. Kung AL, Wang S, Klco JM, Kaelin WG, et al. Suppression of tumor growth through disruption of hypoxia-inducible transcription. Nat Med. 2000;6:1335–40. doi:10.1038/82146.

    Article  CAS  PubMed  Google Scholar 

  17. Folkman J. Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov. 2007;6:273–86. doi:10.1038/nrd2115.

    Article  CAS  PubMed  Google Scholar 

  18. Peter V, Oliver T, Michael H. Treatment resistance of solid tumors. Med Oncol. 2001;18:243–59. doi:10.1385/MO:18:4:243.

    Article  Google Scholar 

  19. Keshet E, Ben-Sasson SA. Anticancer drug targets: approaching angiogenesis. J Clin Invest. 1999;104:1497–501. doi:10.1172/JCI8849.

    Article  CAS  PubMed  Google Scholar 

  20. Pugh CW, Ratcliffe PJ. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med. 2003;9:677–84. doi:10.1038/nm0603-677.

    Article  CAS  PubMed  Google Scholar 

  21. Bocci G, Falcone A, Fioravanti A, Orlandi P, Paolo AD, Fanelli G, et al. Antiangiogenic and anticolorectal cancer effects of metronomic irinotecan chemotherapy alone and in combination with semaxinib. Br J Cancer. 2008;98:1619–29. doi:10.1038/sj.bjc.6604352.

    Article  CAS  PubMed  Google Scholar 

  22. Wu JZ, Ho PC. Evaluation of the in vitro activity and in vivo bioavailability of realgar nanoparticles prepared by cryo-grinding. Eur J Pharm Sci. 2006;29:35–44. doi:10.1016/j.ejps.2006.05.002.

    Article  PubMed  Google Scholar 

  23. Luo LY, Huang J, Gou BD, Zhang TL, Wang K. Induction of human promyelocytic leukemia HL-60 cell differentiation into monocytes by arsenic sulphide: Involvement of serine/threonine protein phosphatases. Leukemia Res. 2006;30:1399–405. doi:10.1016/j.leukres.2006.03.016.

    Article  CAS  Google Scholar 

  24. Menon C, Polin GM, Prabakaran I, Hsi A, Cheung C, Culver JP, et al. An integrated approach to measuring tumor oxygen status using human melanoma Xenografts as a model. Cancer Res. 2003;63:7232–40.

    CAS  PubMed  Google Scholar 

  25. Nawrocki ST, Bruns CJ, Harbison MT, Bold RJ, Gotsch BS, Abbruzzese JL, et al. Effects of the proteasome inhibitor PS-341 on apoptosis and angiogenesis in orthotopic human pancreatic tumor xenografts. Mol Cancer Ther. 2002;1:1243–53.

    CAS  PubMed  Google Scholar 

  26. Selvakumaran M, Yao KS, Feldman MD, O’Dwyer PJ. Anticancer effect of the angiogenesis inhibitor bevacizumab is dependent on susceptibility of tumors to hypoxia-induced apoptosis. Biochem Pharmacol. 2008;75:627–38. doi:10.1016/j.bcp.2007.09.029.

    Article  CAS  PubMed  Google Scholar 

  27. Tse WP, Che CT, Ken L, Lin ZX. Evaluation of the anti-proliferative properties of selected psoriasis-treating Chinese medicines on cultured HaCaT cells. J Ethnopharmacol. 2006;108:133–41. doi:10.1016/j.jep.2006.04.023.

    Article  PubMed  Google Scholar 

  28. Ding HF, Fisher DE. Induction of apoptosis in cancer: new therapeutic opportunities. Ann Med. 2002;34:451–69. doi:10.1080/078538902321012405.

    Article  CAS  PubMed  Google Scholar 

  29. Lee SH, Ryu JK, Lee KY, Woo SM, Park JK, Yoo JW, et al. Enhanced anti-tumor effect of combination therapy with gemcitabine and apigenin in pancreatic cancer. Cancer Lett. 2008;259:39–49. doi:10.1016/j.canlet.2007.09.015.

    Article  CAS  PubMed  Google Scholar 

  30. Jiang XH, Wong BCY, Yuen ST, Jiang SH, Cho CH, Lai KC, et al. Arsenic trioxide induces apoptosis in human gastric cancer cells through up-regulation of p53 and activation of caspase-3. Int J Cancer. 2001;15:173–9. doi:10.1002/1097-0215(200002)9999:9999<::AID-IJC1039>3.0.CO;2-D.

    Article  Google Scholar 

  31. YM Li, Broome JD. Arsenic targets tubulins to induce apoptosis in myeloid leukemia cells. Cancer Res. 1999;59:776–80.

    Google Scholar 

  32. Park WH, Seol JG, Kim ES, Hyun JM, Jung CW, Lee CC, et al. Arsenic trioxide-mediated growth inhibition in MC/CAR myeloma cells via cell cycle arrest in association with induction of cyclin-dependent kinase inhibitor, p21, and apoptosis. Cancer Res. 2000;60:3065–7301.

    CAS  PubMed  Google Scholar 

  33. Leung J, Pang A, Yuen WH, Kwong YL, Tse EWC. Relationship of expression of aquaglyceroporin 9 with arsenic uptake and sensitivity in leukemia cells. Blood. 2007;109:740–6. doi:10.1182/blood-2006-04-019588.

    Article  CAS  PubMed  Google Scholar 

  34. Sintov AC, Wormser U. Topical iodine facilitates transdermal delivery of insulin. J Control Release. 2007;118:185–8. doi:10.1016/j.jconrel.2006.12.006.

    Article  CAS  PubMed  Google Scholar 

  35. Marie V. Mechanisms of arsenic biotransformation. Toxicology. 2002;181:211–7. doi:10.1016/S0300-483X(02)00285-8.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from the Chinese Ministry of Sciences 973 Program (2006CB933300, 2007CB935800), Natural Science Foundation of China (#30721002), Knowledge Innovation Program of the Chinese Academy of Sciences (KSCX2-YW-R-139), the Cultivation Fund of the Ministry of Education of China (NO706035), and a grant from the science and technology key project of Anhui Province (07010302183).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long-Ping Wen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOCX 38.3 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, QH., Zhang, Y., Liu, Y. et al. Anticancer effect of realgar nanoparticles on mouse melanoma skin cancer in vivo via transdermal drug delivery. Med Oncol 27, 203–212 (2010). https://doi.org/10.1007/s12032-009-9192-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12032-009-9192-1

Keywords

Navigation