Skip to main content

Advertisement

Log in

Anaemia of cancer: an overview of mechanisms involved in its pathogenesis

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Anaemia is a common complication in cancer patients. The decrease in haemoglobin is associated with an impaired quality of life, poorer response to therapy and worse prognosis. Numerous factors are involved in the physiopathology of cancer-related anaemia. Some factors such as bleeding, bone marrow infiltration, the effects of chemoradiotherapy and associated nutritional deficiencies are related to the disease itself. In addition, the interaction of the immune system with iron metabolism and erythropoiesis has been shown to be an important factor in the development of anaemia in cancer patients and can be seen in the action of several cytokines on different iron-homeostasis and erythrocyte-cell-production pathways. Some inhibitory cytokines, such as tumour necrosis factor-α and interleukin-1, act on the suppression of erythroid precursor cells and erythropoietic production and response; others, such as interleukins 1 and 6 and hepcidin, impair iron metabolism, causing iron to be diverted from erythropoiesis and retained within the reticuloendothelial system. The main mechanisms involved in the development of cancer-related anaemia are discussed in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Skillings JR, et al. An epidemiological review of red cell transfusions in cancer chemotherapy. Cancer Prev Control 1999;3:207–12.

    PubMed  CAS  Google Scholar 

  2. Coiffier B, Guastalla JP, Pujade-Lauraine E, Bastif P. Anemia Study Group. Predicting cancer-associated anaemia in patients receiving non-platinum chemotherapy: results of a retrospective survey. Eur J Cancer 2001;37:1617–23.

    PubMed  CAS  Google Scholar 

  3. Ludwig H, et al. The European Cancer Anaemia Survey (ECAS): a large, multinational, prospective survey defining the prevalence, incidence, and treatment of anaemia in cancer patients. Eur J Cancer 2004;40:2293–306.

    PubMed  Google Scholar 

  4. Birgegard G, Gascon P, Ludwig H. Evaluation of anemia in patients with multiple myeloma and lymphoma: findings of the European Cancer Anaemia Survey. Eur J Haemaol 2006;77(5):378–86.

    Google Scholar 

  5. Kosmidis P, Krzakowski M. Prospective data from the European Cancer Anaemia Survey (ECAS): focus on patients with lung cancer. Lung Cancer 2003;41:S265.

    Google Scholar 

  6. Schrijvers D, et al. European Cancer Anaemia Survey (ECAS): prospective evaluation of anemia in patients (pts) with gastrointestinal (GI) or colorectal (CR) cancer (CA) (abstract 18). Proc Euro School Oncol 2nd Colorectal Cancer Confer 2002;2:71.

  7. Richardson A. Fatigue in cancer patients: a review of the literature. Eur J Cancer Care 1995;4(1):20–32.

    CAS  Google Scholar 

  8. Stone P, Richards M, Hardy J. Fatigue in patients with cancer. Eur J Cancer 1998;34(11):1670–6.

    PubMed  CAS  Google Scholar 

  9. Cella D. Factors influencing quality of life in cancer patients: anemia and fatigue. Semin Oncol 1998;25(3 Suppl 7):43–6.

    PubMed  CAS  Google Scholar 

  10. Stone P, et al. Cancer-related fatigue: inevitable, unimportant and untreatable? Results of a multi-centre patient survey. Cancer Fatigue Forum. Ann Oncol 2000;11:971–5.

    PubMed  CAS  Google Scholar 

  11. Curt GA. Impact of fatigue on quality of life in oncology patients. Semin Hematol 2000;37(4 Suppl 6):14–7.

    PubMed  CAS  Google Scholar 

  12. Harper P, Littlewood T. Anaemia of cancer: impact on patient fatigue and long-term outcome. Oncology 2005:69(Suppl 2):2–7.

    PubMed  Google Scholar 

  13. Dicato M, Harper P. The optimal hemoglobin level in the cancer patient. Semin Oncol 2002;29(3 Suppl 8):88–91.

    PubMed  CAS  Google Scholar 

  14. Ludwig H, Strasser K. Symptomatology of anemia. Semin Oncol 2001;28(2 Suppl 8):7–14.

    PubMed  CAS  Google Scholar 

  15. Caro JJ, Salas M, Ward A, Goss G. Anemia as an independent prognostic factor for survival in patients with cancer: a systemic, quantitative review. Cancer 2001;91:2214–21.

    PubMed  CAS  Google Scholar 

  16. Waters JS, O’Brien ME, Ashley S. Management of anemia inpatients receiving chemotherapy. J Clin Oncol 2002;20(2):601–3.

    PubMed  Google Scholar 

  17. Obermair A, et al. Impact of hemoglobin levels before and during concurrent chemotherapy on the response to treatment in patients with cervical cancer: preliminary results. Cancer 2001;92:903–8.

    PubMed  CAS  Google Scholar 

  18. Grogan M, et al. The importance of hemoglobin levels during radiotherapy for carcinoma of the cervix. Cancer 1999;86(8):1528–36.

    PubMed  CAS  Google Scholar 

  19. Vaupel P, Kelleher DK, Thews O. Modulation of tumor oxygenation. Int J Radiat Oncol Biol Phys 1998;42:843–8.

    PubMed  CAS  Google Scholar 

  20. Vaupel P, Kelleher DK, Höckel M. Oxygenation status of malignant tumours: Pathogenesis of hypoxia and significance for tumor Therapy. Semin Oncol 2001;28(2 Suppl 8):29–35.

    PubMed  CAS  Google Scholar 

  21. Dunst J. Hemoglobin level and anemia in radiation oncology: prognostic impact and therapeutic implications. Semin Oncol 2000;27(2 Suppl 4):4–8.

    PubMed  CAS  Google Scholar 

  22. Teicher BA, Holden SA, al Achi A, Herman TS. Classification of antineoplastic treatments by their differential toxicity toward putative oxygenated and hypoxic tumor subpopulations in vivo in the FSaIIC murine fibrosarcoma. Cancer Res 1990;50(11):3339–44.

    PubMed  CAS  Google Scholar 

  23. Green SL, Giaccia AJ. Tumor hypoxia and the cell cycle: implications for malignant progression and response to therapy. Cancer J Sci Am 1998;4:218–23.

    PubMed  CAS  Google Scholar 

  24. Harris AL. Hypoxia—a key regulatory factor in tumour growth. Nat Rev Cancer 2002;2:38–47.

    PubMed  CAS  Google Scholar 

  25. Graeber TG, et al. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 1996;379:88–91.

    PubMed  CAS  Google Scholar 

  26. Littlewood TJ. Impact of hemoglobin levels on treatment outcomes in patients with cancer. Semin Oncol 2001;28(2 Suppl 8):49–53.

    PubMed  CAS  Google Scholar 

  27. NCI. Common toxicity criteria. Cancer therapy evaluation program, 1998; version 2.0. Published April 1998 by National Institute of Health, National Cancer Institute. Bethesda, MD [NLM 9810879].

  28. Montserrat E, Bosch F, Rozman C. B-cell chronic lymphocytic leukaemia: recent progress in biology, diagnosis, and therapy. Ann Oncol 1997:8(Suppl 1):93–101.

    PubMed  Google Scholar 

  29. Mercadante S, Gebbia V, Marrazzo A, Filosto S. Anaemia in cancer: pathophysiology and treatment. Cancer Treat Rev 2000;26:303–11.

    PubMed  CAS  Google Scholar 

  30. Groopman JE, Itri LM. Chemotherapy-induced anemia in adults: incidence and treatment. J Natl Cancer Inst 1999;91:1616–34.

    PubMed  CAS  Google Scholar 

  31. Tas F, et al. Anemia in oncology practice: relation to disease and their therapies. Am J Clin Oncol 2002;25(4):371–9.

    PubMed  Google Scholar 

  32. Okamoto H, et al. Chemotherapy-induced anemia in patients with primary lung cancer. Ann Oncol 1992;3:819–24.

    PubMed  CAS  Google Scholar 

  33. Tanvetyanon T, Choudhury AM. Severity, risk factors, and physician practices in the management of anemia during concurrent chemoradiation for head and neck carcinoma. Cancer 2006;106(7):1554–9.

    PubMed  CAS  Google Scholar 

  34. Doll DC, Weiss RB. Hemolytic anemia associated with antineoplastic agents. Cancer Treat Rep 1985;69(7–8):777–82.

    PubMed  CAS  Google Scholar 

  35. Barrett-Lee PJ, Bailey NP, O’Brien ME, Wager E. Large-scale UK audit of blood transfusion requirements and anaemia in patients receiving cytotoxic chemotherapy. Brit J Cancer 2000;82:93–7.

    PubMed  CAS  Google Scholar 

  36. Faquin WC, Schneider TJ, Goldberg MA. Effect of inflammatory cytokines on hypoxia-induced erythropoietin production. Blood 1992;79:1987–94.

    PubMed  CAS  Google Scholar 

  37. Nairz M, Weiss G. Molecular and clinical aspects of iron homeostasis: from anemia to hemochromatosis. Wien Klin Wochenschr 2006;118(15–16):442–462.

    PubMed  CAS  Google Scholar 

  38. Ponka P, Beaumont C, Richardson DR. Function and regulation of transferrin and ferritin. Semin Hematol 1998;35:35–54.

    PubMed  CAS  Google Scholar 

  39. Wardrop SL, Richardson DR. Interferon-gamma and lipopolysaccharide regulate the expression of Nramp2 and increase the uptake of iron from low relative molecular mass compleses by macrophages. Eur J Biochem 2000;267:6586–93.

    PubMed  CAS  Google Scholar 

  40. Aigner E, Weiss G. regulation of iron transport by inflammatory cytokines in human monocytic cells. 13th European macrophage conference. Vienna. Aug 31th–Sept 1st, 2001, abstract.

  41. Byrd T, Horwitz MA. Regulation of transferrin receptor expression and ferritin content in human mononuclear macrophages. Coordinate upregulation by iron transferrin and downregulation by interferon gamma. J Clin Invest 1993;91:969–76.

    PubMed  CAS  Google Scholar 

  42. Ludwiczek S, Aigner E, Theurl I, Weiss G. Cytokine-mediated regulation of iron transport in human monocytic cells. Blood 2003;101(10):4148–54.

    PubMed  CAS  Google Scholar 

  43. Rafferty SP, Domachowske JB, Malech HL. Inhibition of hemoglobin expression by heterologous production of nitric oxide synthase in the K562 erythroleukemic cell line. Blood 1996;88:1070–8.

    PubMed  CAS  Google Scholar 

  44. Furukawa T, Kohno H, Tokynaga R, Taketani S. Nitric oxide mediated inactivation of mammalian ferrochelatase in vivo and in vitro: possible involvement of the iron-sulphur cluster of the enzyme. Biochem J 1995;310:533–8.

    PubMed  CAS  Google Scholar 

  45. Maciejewski JP, et al. Nitric oxide suppression of human hematopoiesis in vitro. Contribution to inhibitory action of interferon-gamma and tumor necrosis factor-alpha. J Clin Invest 1995;96:1085–92.

    PubMed  CAS  Google Scholar 

  46. Ponka P. Tissue specific regulation of iron metabolism and heme synthesis: distinct control mechanism in erythroid cells. Blood 1997;89:1–25.

    PubMed  CAS  Google Scholar 

  47. Murr C, Widner B, Wirleitner B, Fuchs D. Neopterin as a marker for immune system activation. Curr Drug Metab 2002;3(2):175–87.

    PubMed  CAS  Google Scholar 

  48. Reibnegger GJ, Bichler AH, Dapunt O, et al. Neopterin as a prognostic indicador in patients with carcinoma of the uterine cervix. Cancer Res 1986;46:950–5.

    PubMed  CAS  Google Scholar 

  49. Sheldon J, et al. Plasma neopterin as an adjunct to C-reactive protein in assessment of infection. Clin Chem 1991;37:2038–42.

    PubMed  CAS  Google Scholar 

  50. Fuchs D, et al. Association between immune activation, changes of iron metabolism and anaemia in patients with HIV infection. Eur J Haematol 1993;50:90–4.

    Article  PubMed  CAS  Google Scholar 

  51. Grotto HZW, Costa FF, Carneiro MV, Galiza Neto GC. Serum neopterin in patients with Chagas disease. Trans R Soc Trop Med Hyg 1994;88(1):75.

    PubMed  Google Scholar 

  52. Muller TF, et al. Noninvasive monitoring using serum amyloid A and serum neopterin in cardiac transplantation. Clin Chim Acta 1998;276:63–74.

    PubMed  CAS  Google Scholar 

  53. Hamerlinck FF. Neopterin: a review. Exp Dermatol 1999;8:167–76.

    PubMed  CAS  Google Scholar 

  54. Weiss G, et al. Neopterin and prognosis in patients with adenocarcinoma of the colon. Cancer Res 1993;53:260–65.

    PubMed  CAS  Google Scholar 

  55. Reibnegger GJ, et al. Predictive value of interlukin-6 and neopterin in patients with multiple myeloma. Cancer Res 1991;51:6250–3.

    PubMed  CAS  Google Scholar 

  56. Birk D, Gansauge F, Gansauge S, Schwarz A, Berger HG. Levels of serum neopterin are increased in pancreatic cancer patients and correlate with the prognosis. Eur J Med Res 1999;4:156–60.

    PubMed  CAS  Google Scholar 

  57. Berdowska A, Zwirska-Korczala K. Neopterin measurement in clinical diagnosis. J Clin Pharm Ther 2001;26:319–29.

    PubMed  CAS  Google Scholar 

  58. Weiss G, et al. Neopterin modulates toxicity mediated by reactive oxygen and chloride species. FEBS Lett 1993;321:89–92.

    PubMed  CAS  Google Scholar 

  59. Barak M, Gruener N. Neopterin augmentation of tumor necrosis factor production. Immunol Lett 1991;30:101–6.

    PubMed  CAS  Google Scholar 

  60. Denz H, et al. Weight loss in patients with haematological neoplasia is associated with immune system stimulation. Clin Invest 1993;71:37–41.

    CAS  Google Scholar 

  61. Denz H, et al. Association between the activation of macrophages, changes of iron metabolism and the degree of anaemia in patients with malignant disorders. Eur J Haematol 1992;48:244–8.

    Article  PubMed  CAS  Google Scholar 

  62. Pagel H, Fandrey J, Schobersberger W, Fuchs D, Jelkmann W. Effects of neopterin and 7, 8-dihydroneopterin on hypoxia-induced renal erythropoietin production. Eur J Haematol 1999;62:341–5.

    Article  PubMed  CAS  Google Scholar 

  63. Johnson CS, Cook CA, Furmanski P. In vivo suppression of erythropoiesis by tumour necrosis factor alfa (TNF-alfa): reversal with exogenous erythropoietin (EPO). Exp Hematol 1990;18:109–13.

    PubMed  CAS  Google Scholar 

  64. Ulich TR, del Castilho J, Yin S. Tumor necrosis factor exerts dose-dependent effects on erythropoiesis and myrlopoiesis in vivo. Exp Hematol 1990;18:311–5.

    PubMed  CAS  Google Scholar 

  65. Moldawer LL, Marano MA, Wei H, et al. Cachectin/tumor necrosis factor-alpha alters red blood cell kinetics and induces anemia in vivo. FASEB J 1898;3(5):1637–43.

    Google Scholar 

  66. Trey JE, Kushner I. The acute phase response and the hematopoietic system: the role of cytokines. Crit Rev Oncol Hematol 1995;21:1–18.

    PubMed  CAS  Google Scholar 

  67. Weiss G. Modification of iron regulation by the inflammatory response. Best Pract Res Clin Haematol 2005;18:183–201.

    PubMed  CAS  Google Scholar 

  68. Miller LL, Miller SC, Torti SV, Tsuji Y, Torti FM. Iron-independent induction of ferritin H-chain by tumor necrosis factor. Proc Natl Acad Sci USA1991;88(11):4946–50.

    PubMed  CAS  Google Scholar 

  69. Weiss G. Pathogenesis and treatment of anaemia of chronic disease. Blood Rev 2002;16:87–96.

    PubMed  Google Scholar 

  70. Rogers JT, et al. Translational control during the acute phase response. Ferritin synthesis in response to interleukin-1. J Biol Chem 1990;265(24):14572–8.

    PubMed  CAS  Google Scholar 

  71. Means RT Jr, Dessypris EN, Krantz SB. Inhibition of human erythroid colony-forming units by interleukin-1 is mediated by gamma interferon. J Cell Physiol 1992;150:59–64.

    PubMed  CAS  Google Scholar 

  72. Jelkmann W, Pagel H, Wolff M, Fandrey J. Monokines inhibiting erythropoietin production in human hepatoma cultures and in isolated perfused rat kidney. Life Sci 1991;50:301–8.

    Google Scholar 

  73. Salvarani C, et al. The role of interleukin 1, erythropoietin and red cell bound immunoglobulins in the anaemia of rheumatoid arthritis. Clin Exp Rheumatol 1991;9(3):241–6.

    PubMed  CAS  Google Scholar 

  74. Maury CP, et al. Anaemia of chronic disease in AA amyloidosis is associated with allele 2 of the interleukin-1beta-511 promoter gene and raised levels of interlukin-1beta and interleukin-18. J Intern Med 2004;256(2):145–52.

    PubMed  CAS  Google Scholar 

  75. Graziadei I, Gaggl S, Kaserbacher R, Braunsteiner H, Vogel W. The acute-phase protein alpha 1-antitripsin inhibits growth and proliferation of human early erythroid progenitor cells (BFU-E) and of human erythroleukemic cells (K562) in vitro by interfering with transferrin iron uptake. Blood 1994;83:260–8.

    PubMed  CAS  Google Scholar 

  76. Peetre C, Gullberg U, Nilsson E, Olsson I. Effects of recombinant tumor necrosis factor on proliferation and differentiation of leukemic and normal hemopoietic cells in vitro. Relationship to cell surface receptors. J Clin Invest 1986;78:1694–700.

    Article  PubMed  CAS  Google Scholar 

  77. Torti FM, Torti SV. Regulation of ferritin genes and protein. Blood 2002;99:3505–16.

    PubMed  CAS  Google Scholar 

  78. Graversen JH, Madsen M, Moestrup SK. CD163: a signal receptor scavenging haptoglobin-hemoglobin complexes from plasma. Int J Biochem Cell Biol 2002;34(4):309–14.

    PubMed  CAS  Google Scholar 

  79. Weiss G. Iron and anemia of chronic disease. Kidney Int Suppl 1999;69:S12–7.

    PubMed  CAS  Google Scholar 

  80. Krause A, et al. LEAP-1, a novel highly disulfide-bonded human peptide, exhibits antimicrobial activity. FEBS Lett 2000;480:147–50.

    PubMed  CAS  Google Scholar 

  81. Park CH, Valore EV, Waring AJ, Ganz T. Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J Biol Chem 2001;276:7806–10.

    PubMed  CAS  Google Scholar 

  82. Ganz T. Hepcidin—a regulator of intestinal iron absorption and iron recycling by macrophages. Best Pract Res Clin Haematol 2005;18:171–82.

    PubMed  CAS  Google Scholar 

  83. Zasloff M. Antibiotic peptides as mediators of innate immunity. Curr Opin Immunol 1992;4:3–7.

    PubMed  CAS  Google Scholar 

  84. Singh PK, Parsek MR, Greenberg EP, Welsh MJ. A component of innate immunity prevents bacterial biofilm development. Nature 2002;417(6888):552–5.

    PubMed  CAS  Google Scholar 

  85. Pigeon C, et al. A new mouse liver-specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload. J Biol Chem 2001;276:7811–9.

    PubMed  CAS  Google Scholar 

  86. Nicolas G, et al. Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice. Proc Natl Acad Sci USA 2001;98(15):8780–5.

    PubMed  CAS  Google Scholar 

  87. Nemeth E, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 2004;306:2090–3.

    PubMed  CAS  Google Scholar 

  88. Donovan A, Roy CN, Andrews NC. The ins and outs of iron homeostasis. Physiology 2006;21:115–23.

    PubMed  CAS  Google Scholar 

  89. Kemna E, Pickkers P, Nemeth E, van der Hoeven H, Swinkels D. Time-course analysis of hepcidin, serum iron, and plasma cytokine levels in human injected with LPS. Blood 2005;106(5):1864–6.

    PubMed  CAS  Google Scholar 

  90. Nieken J, et al. Recombinant human interleukin-6 induces a rapid and reversible anemia in cancer patients. Blood 1995;86:900–5.

    PubMed  CAS  Google Scholar 

  91. Nemeth E, Valore EV, Territo M, et al. Hepcidin, a putative mediator of anemia of inflammation, is a type II acute-phase protein. Blood 2003;101:2461–3.

    PubMed  CAS  Google Scholar 

  92. Nemeth E, et al. IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J Clin Invest 2004;113:1271–6.

    PubMed  CAS  Google Scholar 

  93. Cartwright GE. The anemia of chronic disorders. Semin Hematol 1966;3:351–75.

    PubMed  CAS  Google Scholar 

  94. Fuchs D, et al. Immune activation and the anemia associated with chronic inflammatory disorders. Eur J Haematol 1991;46:65–70.

    Article  PubMed  CAS  Google Scholar 

  95. Spivak JL. Iron and the anemia of chronic disease. Oncology 2002;16(9 Suppl 10):25–33.

    PubMed  Google Scholar 

  96. National Comprehensive Cancer Network (NCCN). Practice guidelines in oncology. Version 1.2007. Cancer- and treatment-related anemia. Available at http://www.nccn.org/professionals/physician_gls/PDF/anemia.pdf. Accessed May 18, 2007.

  97. Blumberg N, Heal JM. Effects of transfusion on immune function. Cancer recurrence and infection. Arch Pathol Lab Med 1994;118:371–9.

    PubMed  CAS  Google Scholar 

  98. Cella D. Quality of life and clinical decisions in chemotherapy-induced anemia. Oncology 2006;20(8 Suppl 6):25–8.

    PubMed  Google Scholar 

  99. Littewood TJ, et al. Effects of epoetin alfa on hematologic parameters and quality of life in patients receiving nonplatinum chemotherapy: results of a randomized, double-blind, placebo-controlled clinical trial. J Clin Oncol 2001;19:2865–74.

    Google Scholar 

  100. Hedenus M, et al. Efficacy and safety of darbepoetin alfa in anaemic patients with lymphoproliferative malignancies: a randomized, double-blind, placebo-controlled study. Br J Haematol 2003;122:394–403.

    PubMed  CAS  Google Scholar 

  101. Seidenfeld J, et al. Epoetin treatment of anemia associated with cancer therapy: A systematic review and meta-analysis of controlled clinical trials. J Natl Cancer Inst 2001;93:1204–14.

    PubMed  CAS  Google Scholar 

  102. Bohlius J, et al. Recombinant human erythropoietins and cancer patients: Updated meta-analysis of 57 studies including 9353 patients. J Natl Cancer Inst 2006;98:708–14.

    Article  PubMed  CAS  Google Scholar 

  103. Henke M, et al. Erythropoietin to treat head and neck cancer patients with anaemia undergoing radiotheraphy: randomized, double-bind, placebo-controlled trial. Lancet 2003;362:1255–60.

    PubMed  CAS  Google Scholar 

  104. Leyland-Jones B. BEST Investigators and Study Group. Breast cancer trial with erythropoietin terminated unexpectedly. Lancet Oncol 2003;4:459–60.

    PubMed  Google Scholar 

  105. Danish Head and Neck Cancer Group. Interim analysis of DAHANCA 10, December 1. 2006. Avaiable at http://www.dahanca.dk/get_media_file.php?mediaid=125. Accessed May 21, 2007.

  106. Weiss MJ. New insights into erythropoietin and epoetin alfa: mechanisms of action, target tissues, and clinical applications. Oncologist 2003;8(Suppl 3):18–29.

    PubMed  CAS  Google Scholar 

  107. Lappin TR, Maxwell AP, Johnston PG. Warning flags for erythropoiesis-stimulating agents and cancer-associated anemia. Oncologist 2007;12:362–5.

    PubMed  CAS  Google Scholar 

  108. Parganas E et al. Jak2 is essential for signaling through a variety of cytokine receptors. Cell 1998;93:385–95.

    PubMed  CAS  Google Scholar 

  109. Yasuda Y, et al. Erythropoietin regulates tumor growth of human malignancies. Carcinogenesis 2003;24:1021–9.

    PubMed  CAS  Google Scholar 

  110. U.S. Food and Drug Administration. Information for Healthcare Professionais. Erytropoiesis Stimulating Agents (ESA). FDA Alert, February 16, 2007. Avaiable at http://www.fda.gov/cder/drug/InfoSheets/HCP/RHE2007HCP.htm. Accessed May 15, 2007.

  111. Bokemeyer C, et al. EORTC guidelines for the use of erythropoietic proteins in anaemic patients with cancer: 2006 update. Eur J Cancer 2007;43(2):258–70.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Z. W. Grotto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grotto, H.Z.W. Anaemia of cancer: an overview of mechanisms involved in its pathogenesis. Med Oncol 25, 12–21 (2008). https://doi.org/10.1007/s12032-007-9000-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12032-007-9000-8

Keywords

Navigation