Skip to main content
Log in

MicroRNA-330 Directs Downregulation of the GABABR2 in the Pathogenesis of Pancreatic Cancer Pain

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Pancreatic cancer is one of the most aggressive and deadly malignancies with a very poor prognosis. Pancreatic cancer-induced visceral pain is very common and is generally presented among the initial symptoms in patients; such pain is strongly associated with poor quality of life, impaired functional activity, and decreased survival. However, the principal neurobiological mechanisms of pain caused by pancreatic cancer have not been fully elucidated. Accumulating studies have shown that miRNAs play a major role in chronic pain by suppressing key molecules involved in nociception. In the present study, we report that microRNA (miR)-330 is highly expressed in the spinal dorsal horn (SDH) of nude mice with pancreatic cancer pain. Mimicking pancreatic carcinoma-induced SDH miR-330 upregulation by microinjection of miR-330 mimic into the SDH significantly induced abdominal mechanical allodynia in normal nude mice. Additionally, we found that the expression of GABABR2 was significantly decreased in the SDH of nude mice with pancreatic cancer pain and was regulated directly by miR-330 both in vitro and in vivo. Furthermore, inhibition of miR-330 rescued the expression of GABABR2 and alleviated pancreatic carcinoma-induced abdominal pain hypersensitivity in nude mice with pancreatic carcinoma. These results show that miR-330 participates in the genesis of pancreatic carcinoma-induced pain hypersensitivity by inhibiting GABABR2 expression in the SDH and might be a potential therapeutic target for pancreatic cancer pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agarwal V, Bell GW, Nam JW, Bartel DP (2015) Predicting effective microRNA target sites in mammalian mRNAs. Elife 4:e05005

  • Bai G, Ambalavanar R, Wei D, Dessem D (2007) Downregulation of selective microRNAs in trigeminal ganglion neurons following inflammatory muscle pain. Mol Pain 3:15

    PubMed  PubMed Central  Google Scholar 

  • Bapat AA, Hostetter G, Von Hoff DD, Han H (2011) Perineural invasion and associated pain in pancreatic cancer. Nat Rev Cancer 11:695–707

    CAS  PubMed  Google Scholar 

  • Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brandenburger T, Castoldi M, Brendel M, Grievink H, Schlösser L, Werdehausen R, Bauer I, Hermanns H (2012) Expression of spinal cord microRNAs in a rat model of chronic neuropathic pain. Neurosci Lett 506:281–286

    CAS  PubMed  Google Scholar 

  • Bushati N, Cohen SM (2007) microRNA functions. Annu Rev Cell Dev Biol 23:175–205

    CAS  PubMed  Google Scholar 

  • Callaghan B, Haythornthwaite A, Berecki G, Clark RJ, Craik DJ, Adams DJ (2008) Analgesic alpha-conotoxins Vc1.1 and Rg1A inhibit N-type calcium channels in rat sensory neurons via GABAB receptor activation. J Neurosci 28(43):10943–10951

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen HP, Zhou W, Kang LM, Yan H, Zhang L, Xu BH, Cai WH (2014) Intrathecal miR-96 inhibits Nav1.3 expression and alleviates neuropathic pain in rat following chronic construction injury. Neurochem Res 39:76–83

    CAS  PubMed  Google Scholar 

  • de Leon-Casasola OA (2000) Critical evaluation of chemical neurolysis of the sympathetic axis for cancer pain. Cancer Control 7:142–148

    PubMed  Google Scholar 

  • Dobosz Ł, Kaczor M, Stefaniak TJ (2016) Pain in pancreatic cancer: review of medical and surgical remedies. ANZ J Surg 86(10):756–761

    PubMed  Google Scholar 

  • Farh KK, Grimson A, Jan C, Lewis BP, Johnston WK, Lim LP, Burge CB, Bartel DP (2005) The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science 310:1817–1821

    CAS  PubMed  Google Scholar 

  • Favereaux A, Thoumine O, Bouali-Benazzouz R, Roques V, Papon MA, Salam SA, Drutel G, Léger C, Calas A, Nagy F, Landry M (2011) Bidirectional integrative regulation of Cav1.2 calcium channel by microRNA miR-103: role in pain. EMBO J 30:3830–3841

    CAS  PubMed  PubMed Central  Google Scholar 

  • Foley KM (1988) Pain syndromes and pharmacologic management of pancreatic cancer pain. J Pain Symptom Manag 3:176–187

    CAS  Google Scholar 

  • Frangaj A, Fan QR (2018) Structural biology of GABAB receptor. Neuropharmacology 136:68–79

    CAS  PubMed  Google Scholar 

  • Gassmann M, Shaban H, Vigot R, Sansig G, Haller C, Barbieri S, Humeau Y, Schuler V, Müller M, Kinzel B, Klebs K, Schmutz M, Froestl W, Heid J, Kelly PH, Gentry C, Jaton AL, van der Putten H, Mombereau C, Lecourtier L, Mosbacher J, Cryan JF, Fritschy JM, Lüthi A, Kaupmann K, Bettler B (2004) Redistribution of GABAB(1) protein and atypical GABAB responses in GABAB(2)-deficient mice. J Neurosci 24:6086–6097

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gong Q, Lu Z, Huang Q, Ruan L, Chen J, Liang Y, Wang H, Yue Y, Feng S (2015) Altered microRNAs expression profiling in mice with diabetic neuropathic pain. Biochem Biophys Res Commun 456:615–620

    CAS  PubMed  Google Scholar 

  • Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34(Database issue):D140–D144

    CAS  PubMed  Google Scholar 

  • Gwak YS, Tan HY, Nam TS, Paik KS, Hulsebosch CE, Leem JW (2006) Activation of spinal GABA receptors attenuates chronic central neuropathic pain after spinal cord injury. J Neurotrauma 23:1111–1124

    PubMed  Google Scholar 

  • Huang C, Li Y, Guo Y, Zhang Z, Lian G, Chen Y, Li J, Su Y, Li J, Yang K, Chen S, Su H, Huang K, Zeng L (2018) MMP1/PAR1/SP/NK1R paracrine loop modulates early perineural invasion of pancreatic cancer cells. Theranostics 8:3074–3086

    CAS  PubMed  PubMed Central  Google Scholar 

  • Im YB, Jee MK, Choi JI, Cho HT, Kwon OH, Kang SK (2012) Molecular targeting of NOX4 for neuropathic pain after traumatic injury of the spinal cord. Cell Death Dis 3:e426

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jeub M, Emrich M, Pradier B, Taha O, Gailus-Durner V, Fuchs H, de Angelis MH, Huylebroeck D, Zimmer A, Beck H, Racz I (2011) The transcription factor Smad-interacting protein 1 controls pain sensitivity via modulation of DRG neuron excitability. Pain 152:2384–2398

    CAS  PubMed  Google Scholar 

  • Karapanos K, Nomikos IN (2011) Current surgical aspects of palliative treatment for unresectable pancreatic cancer. Cancers (Basel) 3:636–651

    Google Scholar 

  • Kawasaki Y, Xu ZZ, Wang X, Park JY, Zhuang ZY, Tan PH, Gao YJ, Roy K, Corfas G, Lo EH, Ji RR (2008) Distinct roles of matrix metalloproteases in the early- and late-phase development of neuropathic pain. Nat Med 14:331–336

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kelsen DP, Portenoy RK, Thaler HT, Niedzwiecki D, Passik SD, Tao Y, Banks W, Brennan MF, Foley KM (1995) Pain and depression in patients with newly diagnosed pancreas cancer. J Clin Oncol 13:748–755

    CAS  PubMed  Google Scholar 

  • Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11:597–610

    CAS  PubMed  Google Scholar 

  • Kusuda R, Cadetti F, Ravanelli MI, Sousa TA, Zanon S, De Lucca FL et al (2011) Differential expression of microRNAs in mouse pain models. Mol Pain 7:17

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kynast KL, Russe OQ, Möser CV, Geisslinger G, Niederberger E (2013) Modulation of central nervous system-specific microRNA-124a alters the inflammatory response in the formalin test in mice. Pain 154:368–376

    CAS  PubMed  Google Scholar 

  • Laffray S, Bouali-Benazzouz R, Papon MA, Favereaux A, Jiang Y, Holm T, Spriet C, Desbarats P, Fossat P, le Feuvre Y, Decossas M, Héliot L, Langel U, Nagy F, Landry M (2012) Impairment of GABAB receptor dimer by endogenous 14-3-3ζ in chronic pain conditions. EMBO J 31:3239–3251

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee KH, Chen YL, Yeh SD, Hsiao M, Lin JT, Goan YG, Lu PJ (2009) MicroRNA-330 acts as tumor suppressor and induces apoptosis of prostate cancer cells through E2F1-mediated suppression of Akt phosphorylation. Oncogene 28(38):3360–3370

    CAS  PubMed  Google Scholar 

  • Li X, Gibson G, Kim JS, Kroin J, Xu S, van Wijnen AJ, Im HJ (2011) MicroRNA-146a is linked to pain-related pathophysiology of osteoarthritis. Gene 480:34–41

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Zhu X, Xu W, Wang D, Yan J (2013) miR-330 regulates the proliferation of colorectal cancer cells by targeting Cdc42. Biochem Biophys Res Commun 431(3):560–565

    CAS  PubMed  Google Scholar 

  • Li Y, Tatsui CE, Rhines LD, North RY, Harrison DS, Cassidy RM, Johansson CA, Kosturakis AK, Edwards DD, Zhang H, Dougherty PM (2017) Dorsal root ganglion neurons become hyperexcitable and increase expression of voltage-gated T-type calcium channels (Cav3.2) in paclitaxel-induced peripheral neuropathy. Pain 158:417–429

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu TX, Rothenberg ME (2018) MicroRNA. J Allergy Clin Immunol 141:1202–1207

    CAS  PubMed  Google Scholar 

  • Malan TP, Mata HP, Porreca F (2002) Spinal GABA(A) and GABA(B) receptor pharmacology in a rat model of neuropathic pain. Anesthesiology 96:1161–1167

    CAS  PubMed  Google Scholar 

  • Malcangio M (2018) GABAB receptors and pain. Neuropharmacology 136:102–105

    CAS  PubMed  Google Scholar 

  • Martins I, Carvalho P, de Vries MG, Teixeira-Pinto A, Wilson SP, Westerink BH, Tavares I (2015) GABA acting on GABAB receptors located in a medullary pain facilitatory area enhances nociceptive behaviors evoked by intraplantar formalin injection. Pain 156(8):1555–1565

    CAS  PubMed  Google Scholar 

  • Mohammed S, Van Buren G 2nd, Fisher WE (2014) Pancreatic cancer: advances in treatment. World J Gastroenterol 20:9354–9360

    PubMed  PubMed Central  Google Scholar 

  • Mohr AM, Mott JL (2015) Overview of microRNA biology. Semin Liver Dis 35:3–11

    CAS  PubMed  PubMed Central  Google Scholar 

  • Orikawa Y, Kato H, Seto K, Kobayashi N, Yoshinaga K, Hamano H et al (2010) Z-360, a novel therapeutic agent for pancreatic cancer, prevents up-regulation of ephrin B1 gene expression and phosphorylation of NR2B via suppression of interleukin-1 β production in a cancer-induced pain model in mice. Mol Pain 6:72

    PubMed  PubMed Central  Google Scholar 

  • Petitjean H, Hugel S, Barthas F, Bohren Y, Barrot M, Yalcin I, Schlichter R (2014) Activation of transient receptor potential vanilloid 2-expressing primary afferents stimulates synaptic transmission in the deep dorsal horn of the rat spinal cord and elicits mechanical hyperalgesia. Eur J Neurosci 40:3189–3201

    PubMed  Google Scholar 

  • Pinto-Ribeiro F, Moreira V, Pêgo JM, Leão P, Almeida A, Sousa N (2009) Antinociception induced by chronic glucocorticoid treatment is correlated to local modulation of spinal neurotransmitter content. Mol Pain 5:41

    PubMed  PubMed Central  Google Scholar 

  • Qu S, Yao Y, Shang C, Xue Y, Ma J, Li Z, Liu Y (2012) MicroRNA-330 is an oncogenic factor in glioblastoma cells by regulating SH3GL2 gene. PLoS One 7(9):e46010

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raimondi S, Maisonneuve P, Lowenfels AB (2009) Epidemiology of pancreatic cancer: an overview. Nat Rev Gastroenterol Hepatol 6:699–708

    PubMed  Google Scholar 

  • Salio C, Merighi A, Bardoni R (2017) GABAB receptors-mediated tonic inhibition of glutamate release from Aβ fibers in rat laminae III/IV of the spinal cord dorsal horn. Mol Pain 13:1744806917710041

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sengupta JN, Pochiraju S, Kannampalli P, Bruckert M, Addya S, Yadav P, Miranda A, Shaker R, Banerjee B (2013) MicroRNA-mediated GABA Aα-1 receptor subunit down-regulation in adult spinal cord following neonatal cystitis-induced chronic visceral pain in rats. Pain 154:59–70

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sevcik MA, Jonas BM, Lindsay TH, Halvorson KG, Ghilardi JR, Kuskowski MA, Mukherjee P, Maggio JE, Mantyh PW (2006) Endogenous opioids inhibit early-stage pancreatic pain in a mouse model of pancreatic cancer. Gastroenterology 131:900–910

    CAS  PubMed  Google Scholar 

  • Siegel RL, Miller KD, Jemal A (2019) Cancer statistics, 2019. CA Cancer J Clin 69(1):7–34

    PubMed  Google Scholar 

  • Thuault SJ, Brown JT, Sheardown SA, Jourdain S, Fairfax B, Spencer JP, Restituito S, Nation JHL, Topps S, Medhurst AD, Randall AD, Couve A, Moss SJ, Collingridge GL, Pangalos MN, Davies CH, Calver AR (2004) The GABA(B2) subunit is critical for the trafficking and function of native GABA(B) receptors. Biochem Pharmacol 68:1655–1666

    CAS  PubMed  Google Scholar 

  • Towers S, Princivalle A, Billinton A, Edmunds M, Bettler B, Urban L, Castro-Lopes J, Bowery NG (2000) GABAB receptor protein and mRNA distribution in rat spinal cord and dorsal root ganglia. Eur J Neurosci 12:3201–3210

    CAS  PubMed  Google Scholar 

  • von Schack D, Agostino MJ, Murray BS, Li Y, Reddy PS, Chen J, Choe SE, Strassle BW, Li C, Bates B, Zhang L, Hu H, Kotnis S, Bingham B, Liu W, Whiteside GT, Samad TA, Kennedy JD, Ajit SK (2011) Dynamic changes in the microRNA expression profile reveal multiple regulatory mechanisms in the spinal nerve ligation model of neuropathic pain. PLoS One 6:e17670

    Google Scholar 

  • Wang L, Xu H, Ge Y, Zhu H, Yu D, Yu W, Lu Z (2017) Establishment of a murine pancreatic cancer pain model and microarray analysis of pain-associated genes in the spinal cord dorsal horn. Mol Med Rep 16:4429–4436

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wong N, Wang X (2015) miRDB: an online resource for microRNA target prediction and functional annotations. Nucleic Acids Res 43(Database issue):D146–D152

    CAS  PubMed  Google Scholar 

  • Xu JT, Zhao JY, Zhao X, Ligons D, Tiwari V, Atianjoh FE, Lee CY, Liang L, Zang W, Njoku D, Raja SN, Yaster M, Tao YX (2014) Opioid receptor-triggered spinal mTORC1 activation contributes to morphine tolerance and hyperalgesia. J Clin Invest 124:592–603

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu B, Cao J, Zhang J, Jia S, Wu S, Mo K, Wei G, Liang L, Miao X, Bekker A, Tao YX (2017) Role of MicroRNA-143 in nerve injury-induced upregulation of Dnmt3a expression in primary sensory neurons. Front Mol Neurosci 10:350

    PubMed  PubMed Central  Google Scholar 

  • Yates LA, Norbury CJ, Gilbert RJ (2013) The long and short of microRNA. Cell 153:516–519

    CAS  PubMed  Google Scholar 

  • Yu D, Zhu J, Zhu M, Wei K, Chen Q, Wu X, Miao X, Lu Z (2019) Inhibition of mast cell degranulation relieves visceral hypersensitivity induced by pancreatic carcinoma in mice. J Mol Neurosci 69:235–245

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Q, Souba WW, Croce CM, Verne GN (2010) MicroRNA-29a regulates intestinal membrane permeability in patients with irritable bowel syndrome. Gut 59:775–784

    CAS  PubMed  Google Scholar 

  • Zhou YQ, Chen SP, Liu DQ, Manyande A, Zhang W, Yang SB, Xiong BR, Fu QC, Song ZP, Rittner H, Ye DW, Tian YK (2017) The role of spinal GABAB receptors in cancer-induced bone pain in rats. J Pain 18:933–946

    PubMed  Google Scholar 

  • Zhu J, Miao XR, Tao KM, Zhu H, Liu ZY, Yu DW, Chen QB, Qiu HB, Lu ZJ (2017) Trypsin-protease activated receptor-2 signaling contributes to pancreatic cancer pain. Oncotarget 8:61810–61823

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was financially supported by the National Natural Science Foundation of the People’s Republic of China (31371084, 81870864), Joint fund for research, and development of high-level hospital (2017LHJJ10).

Author information

Authors and Affiliations

Authors

Contributions

Zhijie Lu participated in conceiving the project, designing experiments, and executing experiments. Xuerong Miao and Xiaodan Wu designed the projected. Mei Zhu, Liqin Wang, Jiao Zhu, Huihong Xu, Kai Wei, and Qianbo Chen performed animal model establishment, cultured cells, molecular, and behavioral experiments. Mei Zhu and Liqin Wang analyzed the data. Xuerong Miao and Mei Zhu wrote the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Xiaodan Wu, Xuerong Miao or Zhijie Lu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, M., Wang, L., Zhu, J. et al. MicroRNA-330 Directs Downregulation of the GABABR2 in the Pathogenesis of Pancreatic Cancer Pain. J Mol Neurosci 70, 1541–1551 (2020). https://doi.org/10.1007/s12031-020-01607-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-020-01607-7

Keywords

Navigation