Skip to main content
Log in

Cellular Prion Protein Participates in the Regulation of Inflammatory Response and Apoptosis in BV2 Microglia During Infection with Mycobacterium bovis

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The cellular prion protein (PrPC) is a glycoprotein anchored by glycosylphosphatidylinositol to the cell surface and is abundantly expressed in the central nervous system. A previous study has shown that PrPC contributes to the establishment of infections with intracellular bacteria in macrophages. In the present work, we investigated the role of PrPC in the response of BV2 microglia to Mycobacterium bovis infection. For this purpose, we examined the mRNA expression of prion protein gene (PRNP) upon M. bovis infection and analyzed the effect of siRNA-mediated disruption of PRNP on different parameters of microglial activation and apoptosis in M. bovis-infected microglia. We found that M. bovis infection induced a gradual increase in PRNP mRNA level and that siRNA-mediated silencing of PRNP in M. bovis-infected microglia reduced M. bovis-induced upregulation of pro-inflammatory factors, increased the rate of apoptosis in infected microglia, promoted the intrinsic apoptotic pathway, and downregulated the extrinsic apoptotic pathway. We conclude that PrPC participates in the regulation of the response of microglia to M. bovis infection through the upregulation of pro-inflammatory cytokines and the modulation of apoptosis by interference with the intrinsic apoptotic pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

PrP:

Prion protein

PrPC :

Cellular prion protein

PrPSc :

Pathogenic prion protein

PRNP :

Prion protein gene

CNS:

Central nervous system

M. bovis :

Mycobacterium bovis

TB:

Tuberculosis

GPI:

Glycosylphosphatidylinositol

Reference

  • Aguzzi A, Baumann F, Bremer J (2008) The prion's elusive reason for being. Annu Rev Neurosci 31:439–477

    Article  PubMed  CAS  Google Scholar 

  • Arcila ML, Sánchez MD, Ortiz B, Barrera LF, García LF, Rojas M (2007) Activation of apoptosis, but not necrosis, during Mycobacterium tuberculosis infection correlated with decreased bacterial growth: role of TNF-α, IL-10, caspases and phospholipase A2. Cell Immunol 249:80–93

    Article  PubMed  CAS  Google Scholar 

  • Balcewicz-Sablinska MK, Keane J, Kornfeld H, Remold HG (1998) Pathogenic Mycobacterium tuberculosis evades apoptosis of host macrophages by release of TNF-R2, resulting in inactivation of TNF-α. J Immunol 161:2636–2641

    PubMed  CAS  Google Scholar 

  • Behar S, Martin C, Booty M, Nishimura T, Zhao X, Gan H, Divangahi M, Remold H (2011) Apoptosis is an innate defense function of macrophages against Mycobacterium tuberculosis. Mucosal Immunol 4:279–287

    Article  PubMed  CAS  Google Scholar 

  • Bergeron A, Bonay M, Kambouchner M, Lecossier D, Riquet M, Soler P, Hance A, Tazi A (1997) Cytokine patterns in tuberculous and sarcoid granulomas: correlations with histopathologic features of the granulomatous response. J Immunol 159:3034–3043

    PubMed  CAS  Google Scholar 

  • Borges VM, Falcão H, Leite-Júnior JH, Alvim L, Teixeira GP, Russo M, Nóbrega AF, Lopes MF, Rocco PM, Davidson WF (2001) FAS ligand triggers pulmonary silicosis. J Exp Med 194:155–164

    Article  PubMed  CAS  Google Scholar 

  • Bredt D, Snyder S (1994) Nitric oxide: a physiologic messenger molecule. Annu Rev Biochem 63:175–195

    Article  PubMed  CAS  Google Scholar 

  • Carbonell WS, Murase SI, Horwitz AF, Mandell JW (2005) Infiltrative microgliosis: activation and long-distance migration of subependymal microglia following periventricular insults. J Neuroinflammation 2

  • Cosivi O, Grange JM, Daborn C, Raviglione MC, Fujikura T, Cousins D, Robinson R, Huchzermeyer H, De Kantor I, Meslin F (1998) Zoonotic tuberculosis due to Mycobacterium bovis in developing countries. Emerg Infect Dis 4:59

    Article  PubMed  CAS  Google Scholar 

  • Curto M, Reali C, Palmieri G, Scintu F, Schivo ML, Sogos V, Marcialis MA, Ennas MG, Schwarz H, Pozzi G (2004) Inhibition of cytokines expression in human microglia infected by virulent and non-virulent mycobacteria. Neurochem Int 44:381–392

    Article  PubMed  CAS  Google Scholar 

  • Dai G, McMurray D (1999) Effects of modulating TGF-beta 1 on immune responses to mycobacterial infection in guinea pigs. Tuber Lung Dis 79:207–214

    Article  PubMed  CAS  Google Scholar 

  • de Almeida CJG, Chiarini LB, da Silva JP, e Silva PMR, Martins MA, Linden R (2005) The cellular prion protein modulates phagocytosis and inflammatory response. J Leukoc Biol 77:238–246

    Article  PubMed  Google Scholar 

  • De la Rua-Domenech R (2006) Human Mycobacterium bovis infection in the United Kingdom: incidence, risks, control measures and review of the zoonotic aspects of bovine tuberculosis. Tuberculosis (Edinburgh, Scotland) 86:77

    Article  Google Scholar 

  • Ehlers S (2003) Role of tumour necrosis factor (TNF) in host defence against tuberculosis: implications for immunotherapies targeting TNF. Ann Rheum Dis 62:ii37–ii42

    Article  PubMed  CAS  Google Scholar 

  • Eliason DA, Cohen SA, Baratta J, Yu J, Robertson RT (2002) Local proliferation of microglia cells in response to neocortical injury in vitro. Dev Brain Res 137:75–79

    Article  CAS  Google Scholar 

  • Eric Thomas W (1992) Brain macrophages: evaluation of microglia and their functions. Brain Res Rev 17:61–74

    Article  Google Scholar 

  • Flynn JAL, Goldstein MM, Chan J, Triebold KJ, Pfeffer K, Lowenstein CJ, Schrelber R, Mak TW, Bloom BR (1995) Tumor necrosis factor-α is required in the protective immune response against Mycobacterium tuberculosis in mice. Immunity 2:561–572

    Article  PubMed  CAS  Google Scholar 

  • Green JA, Dholakia S, Janczar K, Ong CWM, Moores R, Fry J, Elkington PT, Roncaroli F, Friedland JS (2011) Mycobacterium tuberculosis-infected human monocytes down-regulate microglial MMP-2 secretion in CNS tuberculosis via TNFα, NFκB, p38 and caspase 8 dependent pathways. J Neuroinflammation 8:46

    Article  PubMed  CAS  Google Scholar 

  • Griffith OW, Stuehr DJ (1995) Nitric oxide synthases: properties and catalytic mechanism. Annu Rev Physiol 57:707–734

    Article  PubMed  CAS  Google Scholar 

  • Haddad JJ, Saadé NE, Safieh-Garabedian B (2003) Interleukin-10 and the regulation of mitogen-activated protein kinases: are these signalling modules targets for the anti-inflammatory action of this cytokine? Cell Signal 15:255–267

    Article  PubMed  CAS  Google Scholar 

  • Henn A, Lund S, Hedtjärn M, Schrattenholz A, Pörzgen P, Leist M (2009) The suitability of BV2 cells as alternative model system for primary microglia cultures or for animal experiments examining brain inflammation. ALTEX 26:83

    PubMed  Google Scholar 

  • Horvath RJ, Nutile-McMenemy N, Alkaitis MS, DeLeo JA (2008) Differential migration, LPS-induced cytokine, chemokine, and NO expression in immortalized BV-2 and HAPI cell lines and primary microglial cultures. J Neurochem 107:557–569

    Article  PubMed  CAS  Google Scholar 

  • Kim BH, Lee HG, Choi JK, Kim JI, Choi EK, Carp RI, Kim YS (2004) The cellular prion protein (PrPC) prevents apoptotic neuronal cell death and mitochondrial dysfunction induced by serum deprivation. Mol Brain Res 124:40–50

    Article  PubMed  CAS  Google Scholar 

  • Kuwahara C, Takeuchi AM, Nishimura T, Haraguchi K, Kubosaki A, Matsumoto Y, Saeki K, Matsumoto Y, Yokoyama T, Itohara S (1999) Prions prevent neuronal cell-line death. Nature 400:225–226

    Article  PubMed  CAS  Google Scholar 

  • Li A, Harris DA (2005) Mammalian prion protein suppresses Bax-induced cell death in yeast. J Biol Chem 280:17430–17434

    Article  PubMed  CAS  Google Scholar 

  • Linden R, Martins VR, Prado MAM, Cammarota M, Izquierdo I, Brentani RR (2008) Physiology of the prion protein. Physiol Rev 88:673–728

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Persson JKE, Svensson M, Aldskogius H (1998) Glial cell responses, complement, and clusterin in the central nervous system following dorsal root transection. Glia 23:221–238

    Article  PubMed  CAS  Google Scholar 

  • Mendez-Samperio P, Hernandez-Garay M, Nunez Vazquez A (1998) Inhibition of Mycobacterium bovis BCG-induced tumor necrosis factor alpha secretion in human cells by transforming growth factor beta. Clin Diagn Lab Immunol 5:588–591

    PubMed  CAS  Google Scholar 

  • Mohan VP, Scanga CA, Yu K, Scott HM, Tanaka KE, Tsang E, Tsai MC, Flynn JAL, Chan J (2001) Effects of tumor necrosis factor alpha on host immune response in chronic persistent tuberculosis: possible role for limiting pathology. Infect Immun 69:1847–1855

    Article  PubMed  CAS  Google Scholar 

  • Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–1318

    Article  PubMed  CAS  Google Scholar 

  • Olin M, Choi K, Molitor TW (2011) Morphine alters M. bovis infected microglia’s ability to activate γδ T lymphocytes. J Neuroimmune Pharmacol 6:578–584

    Article  PubMed  Google Scholar 

  • Pasupuleti M, Roupe M, Rydengård V, Surewicz K, Surewicz WK, Chalupka A, Malmsten M, Sörensen OE, Schmidtchen A (2009) Antimicrobial activity of human prion protein is mediated by its N-terminal region. PLoS One 4:e7358

    Article  PubMed  Google Scholar 

  • Prusiner S (1998) Prions. Proc Natl Acad Sci 95(23):13363–13383

  • Randhawa AK, Ziltener HJ, Stokes RW (2008) CD43 controls the intracellular growth of Mycobacterium tuberculosis through the induction of TNF-α-mediated apoptosis. Cell Microbiol 10:2105–2117

    Article  PubMed  CAS  Google Scholar 

  • Rock RB, Gekker G, Hu S, Sheng WS, Cheeran M, Lokensgard JR, Peterson PK (2004) Role of microglia in central nervous system infections. Clin Microbiol Rev 17:942–964

    Article  PubMed  CAS  Google Scholar 

  • Rock RB, Hu S, Gekker G, Sheng WS, May B, Kapur V, Peterson PK (2005) Mycobacterium tuberculosis–induced cytokine and chemokine expression by human microglia and astrocytes: effects of dexamethasone. J Infect Dis 192:2054–2058

    Article  PubMed  CAS  Google Scholar 

  • Schroeter M, Jander S, Huitinga I, Witte OW, Stoll G (1997) Phagocytic response in photochemically induced infarction of rat cerebral cortex the role of resident microglia. Stroke 28:382–386

    Article  PubMed  CAS  Google Scholar 

  • Shi F, Yang L, Kouadir M, Yang Y, Ding T, Wang J, Zhou X, Yin X, Zhao D (2013) Prion protein participates in the regulation of classical and alternative activation of BV2 microglia. J Neurochem 124:168–174

    Article  PubMed  CAS  Google Scholar 

  • Soulet D, Rivest S (2008) Bone-marrow-derived microglia: myth or reality? Curr Opin Pharmacol 8:508–518

    Article  PubMed  CAS  Google Scholar 

  • Tripathi P, Tripathi P, Kashyap L, Singh V (2007) The role of nitric oxide in inflammatory reactions. FEMS Immunol Med Microbiol 51:443–452

    Article  PubMed  CAS  Google Scholar 

  • Watarai M, Kim S, Erdenebaatar J, Makino S, Horiuchi M, Shirahata T, Sakaguchi S, Katamine S (2003) Cellular prion protein promotes Brucella infection into macrophages. J Exp Med 198:5–17

    Article  PubMed  CAS  Google Scholar 

  • Winau F, Weber S, Sad S, De Diego J, Hoops SL, Breiden B, Sandhoff K, Brinkmann V, Kaufmann SHE, Schaible UE (2006) Apoptotic vesicles crossprime CD8 T cells and protect against tuberculosis. Immunity 24:105–117

    Article  PubMed  CAS  Google Scholar 

  • Wong ML, Medrano JF (2005) Real-time PCR for mRNA quantitation. Biotechniques 39:75

    Article  PubMed  CAS  Google Scholar 

  • Yang I, Han SJ, Kaur G, Crane C, Parsa AT (2010) The role of microglia in central nervous system immunity and glioma immunology. J Clin Neurosci 17:6–10

    Article  PubMed  Google Scholar 

  • Zhang SC, Goetz BD, Carré JL, Duncan ID (2001) Reactive microglia in dysmyelination and demyelination. Glia 34:101–109

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Sun B, Huang Y, Kouadir M, Zhou X, Wang Y, Zhao D (2010) IFN-γ promotes THP-1 cell apoptosis during early infection with Mycobacterium bovis by activating different apoptotic signaling. FEMS Immunol Med Microbiol 60:191–198

    Article  PubMed  CAS  Google Scholar 

  • Zucchi FCR, Pelegrini-da-Silva A, Neder L, Silva CL, Tsanaclis AMC, Takayanagui OM (2012) The contribution of a murine CNS-TB model for the understanding of the host–pathogen interactions in the formation of granulomas. J Neurosci Methods 206:88–93

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (Project No. 30972164, No. 31001048, No. 31172293, and No. 31272532), the Special Scientific Fund for Nonprofit Public Industry (Agriculture), China (Project No. 200903027), and the Beijing Science Foundation of China (Project No. 6101002).

Conflict of Interest

The authors declare no financial or commercial conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deming Zhao.

Additional information

Tianjian Ding and Xiangmei Zhou contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, T., Zhou, X., Kouadir, M. et al. Cellular Prion Protein Participates in the Regulation of Inflammatory Response and Apoptosis in BV2 Microglia During Infection with Mycobacterium bovis . J Mol Neurosci 51, 118–126 (2013). https://doi.org/10.1007/s12031-013-9962-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-013-9962-2

Keywords

Navigation