Skip to main content
Log in

Genetic Association Analysis of ITGB3 Polymorphisms with Age at Onset of Schizophrenia

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Schizophrenia (SCZ) is a debilitating disorder with a prevalence of approximately 1 % worldwide. SCZ is known to have a high degree of genetic and clinical heterogeneity and is a major health problem worldwide. The integrin-β 3 subunit gene (ITGB3) gene at 17q21.32 has been implicated in psychiatric disorders. We therefore hypothesized that ITGB3 gene polymorphisms might also play a role in SCZ and age at onset (AAO) of SCZ. We investigated the genetic associations of 23 single-nucleotide polymorphisms (SNPs) of the ITGB3 gene with AAO in SCZ in two Caucasian samples (2,166 cases and 2,525 controls) using linear regression analysis and meta-analysis. We observed four ITGB3-SNPs associated with AAO in SCZ in a non-Genetic Association Information Network (GAIN) sample (p < 10−3). Three of these four SNPs were replicated in the GAIN sample. The SNP rs16941771 was most significantly associated with AAO (p = 7.47 × 10−5). Meta-analysis showed that 6 of 23 SNPs were associated with AAO. The haplotype analysis also supports the association of ITGB3 with AAO. Three disease-associated SNPs were located at species-conserved regions, indicating functional importance. This is the first report which shows that ITGB3 variants are associated with AAO in SCZ, providing direct evidence of the use of AAO as an intermediate phenotype to dissect the complex genetics of SCZ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Addington AM, Rapoport JL (2009) The genetics of childhood-onset schizophrenia: when madness strikes the prepubescent. Curr Psychiatry Rep 11:156–161

    Article  PubMed  Google Scholar 

  • Arranz MJ, Rivera M, Munro JC (2011) Pharmacogenetics of response to antipsychotics in patients with schizophrenia. CNS Drugs 25:933–969. doi:10.2165/11595380-000000000-00000

    Article  PubMed  CAS  Google Scholar 

  • Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265

    Google Scholar 

  • Cannon TD, Keller MC (2006) Endophenotypes in the genetic analyses of mental disorders. Annu Rev Clin Psychol 2:267–290. doi:10.1146/annurev.clinpsy.2.022305.095232

    Article  PubMed  Google Scholar 

  • Di Castelnuovo A, de Gaetano G, Benedetta Donati M, Iacoviello L (2005) Platelet glycoprotein IIb/IIIa polymorphism and coronary artery disease: implications for clinical practice. Am J Pharmacogenomics 5:93–99

    Article  PubMed  Google Scholar 

  • Escamilla M, Hare E, Dassori AM, Peralta JM, Ontiveros A, Nicolini H, Raventos H, Medina R, Mendoza R, Jerez A, Munoz R, Almasy L (2009) A schizophrenia gene locus on chromosome 17q21 in a new set of families of Mexican and Central American ancestry: evidence from the NIMH Genetics of schizophrenia in Latino populations study. Am J Psychiatry 166:442–449. doi:10.1176/appi.ajp.2008.08040612

    Article  PubMed  Google Scholar 

  • Farago N, Feher LZ, Kitajka K, Das UN, Puskas LG (2011) MicroRNA profile of polyunsaturated fatty acid treated glioma cells reveal apoptosis-specific expression changes. Lipids Health Dis 10:173. doi:10.1186/1476-511X-10-173

    Article  PubMed  CAS  Google Scholar 

  • Farrer LA, Cupples LA, Haines JL, Hyman B, Kukull WA, Mayeux R, Myers RH, Pericak-Vance MA, Risch N, van Duijn CM (1997) Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. JAMA 278:1349–1356

    Article  PubMed  CAS  Google Scholar 

  • Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, Higgins J, DeFelice M, Lochner A, Faggart M, Liu-Cordero SN, Rotimi C, Adeyemo A, Cooper R, Ward R, Lander ES, Daly MJ, Altshuler D (2002) The structure of haplotype blocks in the human genome. Science 296:2225–2229. doi:10.1126/science.1069424

    Article  PubMed  CAS  Google Scholar 

  • Gejman PV, Sanders AR, Duan J (2010) The role of genetics in the etiology of schizophrenia. Psychiatr Clin N Am 33:35–66. doi:10.1016/j.psc.2009.12.003

    Article  Google Scholar 

  • Greenwood TA, Lazzeroni LC, Murray SS, Cadenhead KS, Calkins ME, Dobie DJ, Green MF, Gur RE, Gur RC, Hardiman G, Kelsoe JR, Leonard S, Light GA, Nuechterlein KH, Olincy A, Radant AD, Schork NJ, Seidman LJ, Siever LJ, Silverman JM, Stone WS, Swerdlow NR, Tsuang DW, Tsuang MT, Turetsky BI, Freedman R, Braff DL (2011) Analysis of 94 candidate genes and 12 endophenotypes for schizophrenia from the Consortium on the Genetics of Schizophrenia. Am J Psychiatry 168:930–946. doi:10.1176/appi.ajp.2011.10050723

    Article  PubMed  Google Scholar 

  • Guilmatre A, Dubourg C, Mosca AL, Legallic S, Goldenberg A, Drouin-Garraud V, Layet V, Rosier A, Briault S, Bonnet-Brilhault F, Laumonnier F, Odent S, Le Vacon G, Joly-Helas G, David V, Bendavid C, Pinoit JM, Henry C, Impallomeni C, Germano E, Tortorella G, Di Rosa G, Barthelemy C, Andres C, Faivre L, Frebourg T, Saugier Veber P, Campion D (2009) Recurrent rearrangements in synaptic and neurodevelopmental genes and shared biologic pathways in schizophrenia, autism, and mental retardation. Arch Gen Psychiatry 66:947–956. doi:10.1001/archgenpsychiatry.2009.80

    Article  PubMed  CAS  Google Scholar 

  • Hamshere ML, Holmans PA, McCarthy GM, Jones LA, Murphy KC, Sanders RD, Gray MY, Zammit S, Williams NM, Norton N, Williams HJ, McGuffin P, O'Donovan MC, Craddock N, Owen MJ, Cardno AG (2011) Phenotype evaluation and genomewide linkage study of clinical variables in schizophrenia. Am J Med Genet B Neuropsychiatr Genet 156B:929–940. doi:10.1002/ajmg.b.31240

    PubMed  Google Scholar 

  • Hare E, Glahn DC, Dassori A, Raventos H, Nicolini H, Ontiveros A, Medina R, Mendoza R, Jerez A, Munoz R, Almasy L, Escamilla MA (2010) Heritability of age of onset of psychosis in schizophrenia. Am J Med Genet B Neuropsychiatr Genet 153B:298–302. doi:10.1002/ajmg.b.30959

    PubMed  Google Scholar 

  • Harrison PJ, Tunbridge EM (2008) Catechol-O-methyltransferase (COMT): a gene contributing to sex differences in brain function, and to sexual dimorphism in the predisposition to psychiatric disorders. Neuropsychopharmacol: Off Publ Am Coll Neuropsychopharmacol 33:3037–3045. doi:10.1038/sj.npp.1301543

    Article  CAS  Google Scholar 

  • Jarskog LF (2006) Apoptosis in schizophrenia: pathophysiologic and therapeutic considerations. Curr Opin Psychiatry 19:307–312. doi:10.1097/01.yco.0000218603.25346.8f

    Article  PubMed  Google Scholar 

  • Jarskog LF, Selinger ES, Lieberman JA, Gilmore JH (2004) Apoptotic proteins in the temporal cortex in schizophrenia: high Bax/Bcl-2 ratio without caspase-3 activation. Am J Psychiatry 161:109–115

    Article  PubMed  Google Scholar 

  • Jonsson AK, Spigset O, Hagg S (2012) Venous thromboembolism in recipients of antipsychotics: incidence, mechanisms and management. CNS Drugs 26:649–662. doi:10.2165/11633920-000000000-00000

    Article  PubMed  Google Scholar 

  • Kendler KS, Neale MC (2010) Endophenotype: a conceptual analysis. Mol Psychiatry 15:789–797. doi:10.1038/mp.2010.8

    Article  PubMed  Google Scholar 

  • Kucharska-Newton AM, Monda KL, Campbell S, Bradshaw PT, Wagenknecht LE, Boerwinkle E, Wasserman BA, Heiss G (2011) Association of the platelet GPIIb/IIIa polymorphism with atherosclerotic plaque morphology: the Atherosclerosis Risk in Communities (ARIC) Study. Atherosclerosis 216:151–156. doi:10.1016/j.atherosclerosis.2011.01.038

    Article  PubMed  CAS  Google Scholar 

  • Kumra S, Asarnow R, Grace A, Keshavan M, McClellan J, Sikich L, Wagner A (2009) From bench to bedside: translating new research from genetics and neuroimaging into treatment development for early-onset schizophrenia. Early Interv Psychiatry 3:243–258. doi:10.1111/j.1751-7893.2009.00142.x

    Article  PubMed  Google Scholar 

  • Momeni P, DeTucci K, Straub RE, Weinberger DR, Davies P, Grafman J, Hardy J, Huey ED (2010) Progranulin (GRN) in two siblings of a Latino family and in other patients with schizophrenia. Neurocase 16:273–279. doi:10.1080/13554790903456209

    Article  PubMed  Google Scholar 

  • Nurden AT, Fiore M, Pillois X, Nurden P (2009) Genetic testing in the diagnostic evaluation of inherited platelet disorders. Semin Thromb Hemost 35:204–212. doi:10.1055/s-0029-1220328

    Article  PubMed  CAS  Google Scholar 

  • O'Donovan MC, Craddock N, Norton N, Williams H, Peirce T, Moskvina V, Nikolov I, Hamshere M, Carroll L, Georgieva L, Dwyer S, Holmans P, Marchini JL, Spencer CC, Howie B, Leung HT, Hartmann AM, Moller HJ, Morris DW, Shi Y, Feng G, Hoffmann P, Propping P, Vasilescu C, Maier W, Rietschel M, Zammit S, Schumacher J, Quinn EM, Schulze TG, Williams NM, Giegling I, Iwata N, Ikeda M, Darvasi A, Shifman S, He L, Duan J, Sanders AR, Levinson DF, Gejman PV, Cichon S, Nothen MM, Gill M, Corvin A, Rujescu D, Kirov G, Owen MJ, Buccola NG, Mowry BJ, Freedman R, Amin F, Black DW, Silverman JM, Byerley WF, Cloninger CR, Molecular Genetics of Schizophrenia C (2008) Identification of loci associated with schizophrenia by genome-wide association and follow-up. Nat Genet 40:1053–1055. doi:10.1038/ng.201

    Article  PubMed  Google Scholar 

  • Oud MJ, Meyboom-de Jong B (2009) Somatic diseases in patients with schizophrenia in general practice: their prevalence and health care. BMC Fam Pract 10:32. doi:10.1186/1471-2296-10-32

    Article  PubMed  Google Scholar 

  • Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904–909. doi:10.1038/ng1847

    Article  PubMed  CAS  Google Scholar 

  • Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575. doi:10.1086/519795

    Article  PubMed  CAS  Google Scholar 

  • Sanders AR, Duan J, Levinson DF, Shi J, He D, Hou C, Burrell GJ, Rice JP, Nertney DA, Olincy A, Rozic P, Vinogradov S, Buccola NG, Mowry BJ, Freedman R, Amin F, Black DW, Silverman JM, Byerley WF, Crowe RR, Cloninger CR, Martinez M, Gejman PV (2008) No significant association of 14 candidate genes with schizophrenia in a large European ancestry sample: implications for psychiatric genetics. Am J Psychiatry 165(4):497–506

    Google Scholar 

  • Sagud M, Muck-Seler D, Mihaljevic-Peles A, Vuksan-Cusa B, Zivkovic M, Jakovljevic M, Pivac N (2010) Catechol-O-methyl transferase and schizophrenia. Psychiatr Danub 22:270–274

    PubMed  CAS  Google Scholar 

  • Shi J, Levinson DF, Duan J, Sanders AR, Zheng Y, Pe'er I, Dudbridge F, Holmans PA, Whittemore AS, Mowry BJ, Olincy A, Amin F, Cloninger CR, Silverman JM, Buccola NG, Byerley WF, Black DW, Crowe RR, Oksenberg JR, Mirel DB, Kendler KS, Freedman R, Gejman PV (2009) Common variants on chromosome 6p22.1 are associated with schizophrenia. Nature 460:753–757. doi:10.1038/nature08192

    PubMed  CAS  Google Scholar 

  • Sullivan PF, Kendler KS, Neale MC (2003) Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch Gen Psychiatry 60:1187–1192. doi:10.1001/archpsyc.60.12.1187

    Article  PubMed  Google Scholar 

  • Vincent JB, Petronis A, Strong E, Parikh SV, Meltzer HY, Lieberman J, Kennedy JL (1999) Analysis of genome-wide CAG/CTG repeats, and at SEF2-1B and ERDA1 in schizophrenia and bipolar affective disorder. Mol Psychiatry 4:229–234

    Article  PubMed  Google Scholar 

  • Wang KS, Liu X, Zhang Q, Aragam N, Pan Y (2011) Genome-wide association analysis of age at onset in schizophrenia in a European-American sample. Am J Med Genet B Neuropsychiatr Genet 156B:671–680. doi:10.1002/ajmg.b.31209

    PubMed  Google Scholar 

  • Weiss LA, Kosova G, Delahanty RJ, Jiang L, Cook EH, Ober C, Sutcliffe JS (2006) Variation in ITGB3 is associated with whole-blood serotonin level and autism susceptibility. Eur J Hum Genet 14:923–931. doi:10.1038/sj.ejhg.5201644

    Article  PubMed  CAS  Google Scholar 

  • Xu, Blackburn, Gonzalez, Ramirez, Zavala, Armas, Contreras, Contreras-Rojas, Dassori, Flores L, Jerez, Raventós, Lehman, Ontiveros, Nicolini, Escamilla (2012) Rare copy number variants were identified in schizophrenia and bipolar disorder in the Hispanic population. In: American Society of Human Genetics (ASHG) 2012 annual meeting in San Francisco, California, November 6-10, 2012

Download references

Acknowledgments

Funding support for Genome-Wide Association Study of Schizophrenia was providedby funding from the NIH grant 5U01M0H79469 to Dr. PV Gejman and the genotypingof samples was provided through the Genetic Association Information Network (GAIN). The dataset used for the analyses described in this manuscript were obtainedfrom the database of Genotype and Phenotype (dbGaP) found at http://www.ncbi.nlm.nih.gov/gap through dbGaP accession number phs000021.v2.p1. Samples and associated phenotype data for the Genome-Wide Association Study of Schizophrenia were provided by Dr. PV Gejman. Funding support for the companion studies, Genome-Wide Association Study of Schizophrenia (GAIN) and Molecular Genetics of Schizophrenia - nonGAIN Sample (MGS_nonGAIN), wasprovided by Genomics Research Branch at NIMH and the genotyping and analysis ofsamples was provided through the Genetic Association Information Network (GAIN) and under the MGS U01s: MH79469 and MH79470. Assistance with data cleaning wasprovided by the National Center for Biotechnology Information. The MGS dataset(s) used for the analyses described in this manuscript were obtained from the database of Genotype and Phenotype (dbGaP) found at http://www.ncbi.nlm.nih.gov/gap through dbGaP accession numbers phs000021.v2.p1 (GAIN) and phs000167.v1.p1(nonGAIN). Samples and associated phenotype data for the MGS GWAS study werecollected under the following grants: NIMH Schizophrenia Genetics Initiative U01s: MH46276 (CR Cloninger), MH46289 (C Kaufmann), and MH46318 (MT Tsuang); andMGS Part 1 (MGS1) and Part 2 (MGS2) R01s: MH67257 (NG Buccola), MH59588 (BJMowry), MH59571 (PV Gejman), MH59565 (Robert Freedman), MH59587 (F Amin), MH60870 (WF Byerley), MH59566 (DW Black), MH59586 (JM Silverman), MH61675(DF Levinson), and MH60879 (CR Cloninger). Further details of collection sites, individuals, and institutions may be found in data supplement Table 1 of Sanders et al. (2008).

Conflict of Interest

All authors have reported no financial interests or potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ke-Sheng Wang or Chun Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, KS., Liu, X., Arana, T.B. et al. Genetic Association Analysis of ITGB3 Polymorphisms with Age at Onset of Schizophrenia. J Mol Neurosci 51, 446–453 (2013). https://doi.org/10.1007/s12031-013-0059-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-013-0059-8

Keywords

Navigation