Skip to main content
Log in

The Tangled History of Brain–Heart Pathways in Acute Brain Injury

  • Neurocritical Care Through History
  • Published:
Neurocritical Care Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  1. Cushing, H., Concerning a definite regulatory mechanism of the vaso-motor centre which controls blood pressure during cerebral compression. Bull Johns Hopkins Hosp 1901;XII(126):290–2.

  2. Cushing H. Physiologische und anatomische Beobachtungen uber den Einfluss von Hirnkompression auf den intracraniellen Kreislauf und uber einige hiermit verwandte Erscheinungen. Mitteilungen aus der Grenzgebieten der Medizin und Chirurgie. 1902;9:773–808.

    Google Scholar 

  3. Cushing, H., Some experimental and clinical observations concerning states of increased intracranial tension. The Mutter Lecture for 1901. Am J Med Sci 1902;124:375–400.

  4. Cushing H. The blood pressure reaction of acute cerebral compression illustrated by cases of intracranial hemorrhage: a sequel to the Mütter Lecture for 1901. Am J Med Sci. 1902;125:1017–44.

    Article  Google Scholar 

  5. Heymans C. The control of heart rate consequent to changes in the cephalic blood pressure and in the intracranial pressure. Am J Physiol. 1928;85:498–505.

    Article  Google Scholar 

  6. Guyenet PG, Brown DL. Unit activity in nucleus paragigantocellularis lateralis during cerebral ischemia in the rat. Brain Res. 1986;364(2):301–14.

    Article  CAS  PubMed  Google Scholar 

  7. Jacobson SA, Danufsky P. Marked electrocardiographic changes produced by experimental head trauma. J Neuropathol Exp Neurol. 1954;13(3):462–6.

    Article  CAS  PubMed  Google Scholar 

  8. Kaye MP, McDonald RH, Randall WC. Systolic hypertension and subendocardial hemorrhages produced by electrical stimulation of the stellate ganglion. Circ Res. 1961;10:1361–70.

    Google Scholar 

  9. Gauer OH. Volume changes of the left ventricle during blood pooling and exercise in the intact animal; their effects on left ventricular performance. Physiol Rev. 1955;35(1):143–55.

    Article  CAS  PubMed  Google Scholar 

  10. Hawkins WE, Clower BR. Myocardial damage after head trauma and simulated intracranial haemorrhage in mice: the role of the autonomic nervous system. Cardiovasc Res. 1971;5(4):524–9.

    Article  CAS  PubMed  Google Scholar 

  11. Smith RP, Tomlinson BE. Subendocardial haemorrhages associated with intracranial lesions. J Pathol Bacteriol. 1954;68(2):327–34.

    Article  CAS  PubMed  Google Scholar 

  12. Hall RE, Sybers HD, Greenhoot JH, Bloor CM. Myocardial alterations following hypothalamic stimulation in the intact conscious dog. Am Heart J. 1974;88(6):770–6.

    Article  CAS  PubMed  Google Scholar 

  13. Pitts RF, Larrabee MG, Bronk D. Analysis of hypothalamic cardiovascular control. Am J Physiol. 1941;134:359.

    Article  Google Scholar 

  14. van Bogaert A, Selosse P. Role of the cerebral frontal lobe in the etiology of cardiovascular and electrocardiographic reactions of meningeal hemorrhage. Arch Mal Coeur Vaiss. 1972;65(3):351–9.

    PubMed  Google Scholar 

  15. Melville KI, Blum B, Shister HE, Silver MD. Cardiac ischemic changes and arrhythmias induced by hypothalamic stimulation. Am J Cardiol. 1963;12:781–91.

    Article  CAS  PubMed  Google Scholar 

  16. Attar HJ, Gutierrez MT, Bellet S, Ravens JR. Effect of stimulation of hypothalamus and reticular activating system on production of cardiac arrhythmia. Circ Res. 1963;12:14–21.

    Article  CAS  PubMed  Google Scholar 

  17. Kolin A, Norris JW. Myocardial damage from acute cerebral lesions. Stroke. 1984;15(6):990–3.

    Article  CAS  PubMed  Google Scholar 

  18. Novitzky D, Wicomb WN, Cooper DK, Rose AG, Reichart B. Prevention of myocardial injury during brain death by total cardiac sympathectomy in the Chacma baboon. Ann Thorac Surg. 1986;41(5):520–4.

    Article  CAS  PubMed  Google Scholar 

  19. Nayate A, Moore SA, Weiss R, et al. Cardiac damage after lesions of the nucleus tractus solitarii. Am J Physiol Regul Integr Comp Physiol. 2009;296(2):R272–9.

    Article  CAS  PubMed  Google Scholar 

  20. Jacob WA, Van Bogaert A, De Groodt-Lasseel MH. Myocardial ultrastructure and haemodynamic reactions during experimental subarachnoid haemorrhage. J Mol Cell Cardiol. 1972;4(4):287–98.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eelco F. M. Wijdicks.

Ethics declarations

Conflicts of Interest

The author declares that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the collection “Neurocritical Care Through History”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wijdicks, E.F.M. The Tangled History of Brain–Heart Pathways in Acute Brain Injury. Neurocrit Care 38, 821–824 (2023). https://doi.org/10.1007/s12028-021-01193-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-021-01193-5

Navigation