Skip to main content

Advertisement

Log in

Biofluid Biomarkers in Traumatic Brain Injury: A Systematic Scoping Review

  • Review Article
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Emerging evidence suggests that biofluid-based biomarkers have diagnostic and prognostic potential in traumatic brain injuries (TBI). However, owing to the lack of a conceptual framework or comprehensive review, it is difficult to visualize the breadth of materials that might be available. We conducted a systematic scoping review to map and categorize the evidence regarding biofluid-based biochemical markers of TBI. A comprehensive search was undertaken in January 2019. Of 25,354 records identified through the literature search, 1036 original human studies were included. Five hundred forty biofluid biomarkers were extracted from included studies and classified into 19 distinct categories. Three categories of biomarkers including cytokines, coagulation tests, and nerve tissue proteins were investigated more than others and assessed in almost half of the studies (560, 515, and 502 from 1036 studies, respectively). S100 beta as the most common biomarker for TBI was tested in 21.2% of studies (220 articles). Cortisol was the only biomarker measured in blood, cerebrospinal fluid, urine, and saliva. The most common sampling time was at admission and within 24 h of injury. The included studies focused mainly on biomarkers from blood and central nervous system sources, the adult population, and severe and blunt injuries. The most common outcome measures used in studies were changes in biomarker concentration level, Glasgow coma scale, Glasgow outcome scale, brain computed tomography scan, and mortality rate. Biofluid biomarkers could be clinically helpful in the diagnosis and prognosis of TBI. However, there was no single definitive biomarker with accurate characteristics. The present categorization would be a road map to investigate the biomarkers of the brain injury cascade separately and detect the most representative biomarker of each category. Also, this comprehensive categorization could provide a guiding framework to design combined panels of multiple biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Majdan M, Plancikova D, Brazinova A, et al. Epidemiology of traumatic brain injuries in Europe: a cross-sectional analysis. Lancet Public Health. 2016;1(2):e76–83.

    Article  PubMed  Google Scholar 

  2. GBD Traumatic Brain Injury, Spinal Cord Injury. Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18(1):56–87.

    Article  Google Scholar 

  3. McGinn MJ, Povlishock JT. Pathophysiology of traumatic brain injury. Neurosurg Clin N Am. 2016;27(4):397–407.

    Article  PubMed  Google Scholar 

  4. Pearn ML, Niesman IR, Egawa J, et al. Pathophysiology associated with traumatic brain injury: current treatments and potential novel therapeutics. Cell Mol Neurobiol. 2017;37(4):571–85.

    Article  CAS  PubMed  Google Scholar 

  5. Dixon KJ. Pathophysiology of traumatic brain injury. Phys Med Rehabil Clin N Am. 2017;28(2):215–25.

    Article  PubMed  Google Scholar 

  6. Hawryluk GW, Manley GT. Classification of traumatic brain injury: past, present, and future. Handb Clin Neurol. 2015;127:15–21.

    Article  PubMed  Google Scholar 

  7. Joseph B, Pandit V, Aziz H, et al. Mild traumatic brain injury defined by Glasgow Coma Scale: Is it really mild? Brain Inj. 2015;29(1):11–6.

    Article  PubMed  Google Scholar 

  8. Andriessen TM, Horn J, Franschman G, et al. Epidemiology, severity classification, and outcome of moderate and severe traumatic brain injury: a prospective multicenter study. J Neurotrauma. 2011;28(10):2019–31.

    Article  PubMed  Google Scholar 

  9. Nagesh M, Patel KR, Mishra A, et al. Role of repeat CT in mild to moderate head injury: an institutional study. Neurosurg Focus. 2019;47(5):E2.

    Article  PubMed  Google Scholar 

  10. Sumritpradit P, Setthalikhit T, Chumnanvej S. Assessment and predicting factors of repeated brain computed tomography in traumatic brain injury patients for risk-stratified care management: a 5-year retrospective study. Neurol Res Int. 2016;2016:2737028.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Melnick ER, Szlezak CM, Bentley SK, et al. CT overuse for mild traumatic brain injury. Joint Comm J Qual Patient Saf. 2012;38(11):483–9.

    Google Scholar 

  12. Jinadasa S, Boone MD. Controversies in the management of traumatic brain injury. Anesthesiol Clin. 2016;34(3):557–75.

    Article  PubMed  Google Scholar 

  13. Amyot F, Arciniegas DB, Brazaitis MP, et al. A review of the effectiveness of neuroimaging modalities for the detection of traumatic brain injury. J Neurotrauma. 2015;32(22):1693–721.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Shenton ME, Hamoda HM, Schneiderman JS, et al. A review of magnetic resonance imaging and diffusion tensor imaging findings in mild traumatic brain injury. Brain Imaging Behav. 2012;6(2):137–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Morgan CD, Zuckerman SL, King LE, et al. Post-concussion syndrome (PCS) in a youth population: defining the diagnostic value and cost-utility of brain imaging. Childs Nerv Syst. 2015;31(12):2305–9.

    Article  PubMed  Google Scholar 

  16. Voormolen DC, Haagsma JA, Polinder S, et al. Post-concussion symptoms in complicated versus uncomplicated mild traumatic brain injury patients at three and six months post-injury: results from the CENTER-TBI study. J Clin Med. 2019;8(11):1921.

    Article  PubMed Central  Google Scholar 

  17. Wang KK, Yang Z, Zhu T, et al. An update on diagnostic and prognostic biomarkers for traumatic brain injury. Expert Rev Mol Diagn. 2018;18(2):165–80.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Saatman KE, Duhaime A-C, Bullock R, et al. Classification of traumatic brain injury for targeted therapies. J Neurotrauma. 2008;25(7):719–38.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Dadas A, Washington J, Diaz-Arrastia R, Janigro D. Biomarkers in traumatic brain injury (TBI): a review. Neuropsychiatr Dis Treat. 2018;14:2989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Maas A. Traumatic brain injury: changing concepts and approaches. Chin J Traumatol. 2016;19(1):3–6.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Najem D, Rennie K, Ribecco-Lutkiewicz M, et al. Traumatic brain injury: classification, models, and markers. Biochem Cell Biol. 2018;96(4):391–406.

    Article  CAS  PubMed  Google Scholar 

  22. Shamseer L, Moher D, Clarke M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ. 2015;349:g7647.

    Article  Google Scholar 

  23. All MeSH Categories: Chemicals and Drugs Category. 2020. https://www.ncbi.nlm.nih.gov/mesh/1000068.

  24. Yang Z, Wang KK. Glial fibrillary acidic protein: from intermediate filament assembly and gliosis to neurobiomarker. Trends Neurosci. 2015;38(6):364–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Thelin EP, Nelson DW, Bellander B-M. A review of the clinical utility of serum S100B protein levels in the assessment of traumatic brain injury. Acta Neurochir. 2017;159(2):209–25.

    Article  PubMed  Google Scholar 

  26. Olczak M, Kwiatkowska M, Niderla-Bielińska J, et al. Brain-originated peptides as possible biochemical markers of traumatic brain injury in cerebrospinal fluid post-mortem examination. Folia Neuropathol. 2018;56:97–103.

    Article  PubMed  Google Scholar 

  27. Simon DW, McGeachy MJ, Bayır H, et al. The far-reaching scope of neuroinflammation after traumatic brain injury. Nat Rev Neurol. 2017;13(3):171.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Thelin EP, Hall CE, Gupta K, et al. Elucidating pro-inflammatory cytokine responses after traumatic brain injury in a human stem cell model. J Neurotrauma. 2018;35(2):341–52.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hinson HE, Rowell S, Schreiber M. Clinical evidence of inflammation driving secondary brain injury: a systematic review. J Trauma Acute Care Surg. 2015;78(1):184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Woodcock T, Morganti-Kossmann C. The role of markers of inflammation in traumatic brain injury. Front Neurol. 2013;4:18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Epstein DS, Mitra B, O’Reilly G, Rosenfeld JV, Cameron PA. Acute traumatic coagulopathy in the setting of isolated traumatic brain injury: a systematic review and meta-analysis. Injury. 2014;45(5):819–24.

    Article  PubMed  Google Scholar 

  32. Nakae R, Takayama Y, Kuwamoto K, et al. Time course of coagulation and fibrinolytic parameters in patients with traumatic brain injury. J Neurotrauma. 2016;33(7):688–95.

    Article  PubMed  Google Scholar 

  33. Laroche M, Kutcher ME, Huang MC, Cohen MJ, Manley GT. Coagulopathy after traumatic brain injury. Neurosurgery. 2012;70(6):1334–45.

    Article  PubMed  Google Scholar 

  34. Maegele M, Schöchl H, Menovsky T, et al. Coagulopathy and haemorrhagic progression in traumatic brain injury: advances in mechanisms, diagnosis, and management. The Lancet Neurology. 2017;16(8):630–47.

    Article  PubMed  Google Scholar 

  35. Pandor A, Harnan S, Goodacre S, et al. Diagnostic accuracy of clinical characteristics for identifying CT abnormality after minor brain injury: a systematic review and meta-analysis. J Neurotrauma. 2012;29(5):707–18.

    Article  PubMed  Google Scholar 

  36. Harhangi BS, Kompanje EJO, Leebeek F, Maas AI. Coagulation disorders after traumatic brain injury. Acta Neurochir. 2008;150(2):165–75.

    Article  CAS  PubMed  Google Scholar 

  37. Kim YJ. A systematic review of factors contributing to outcomes in patients with traumatic brain injury. J Clin Nurs. 2011;20(11–12):1518–32.

    Article  PubMed  Google Scholar 

  38. Wang MC, Linnau KF, Tirschwell DL, Hollingworth W. Utility of repeat head computed tomography after blunt head trauma: a systematic review. J Trauma Acute Care Sur. 2006;61(1):226–33.

    Article  Google Scholar 

  39. Ingebrigtsen T, Romner B. Biochemical serum markers of traumatic brain injury. J Trauma Acute Care Surg. 2002;52(4):798–808.

    Article  CAS  Google Scholar 

  40. Kövesdi E, Lückl J, Bukovics P, et al. Update on protein biomarkers in traumatic brain injury with emphasis on clinical use in adults and pediatrics. Acta Neurochir. 2010;152(1):1–17.

    Article  PubMed  Google Scholar 

  41. Thelin EP, Zeiler FA, Ercole A, et al. Serial sampling of serum protein biomarkers for monitoring human traumatic brain injury dynamics: a systematic review. Front Neurol. 2017;8:300.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Heidari K, Vafaee A, Rastekenari AM, et al. S100B protein as a screening tool for computed tomography findings after mild traumatic brain injury: systematic review and meta-analysis. Brain Inj. 2015;29(10):1146–57.

    Article  PubMed  Google Scholar 

  43. Undén J, Romner B. Can low serum levels of S100B predict normal CT findings after minor head injury in adults? An evidence-based review and meta-analysis. J Head Trauma Rehabilit. 2010;25(4):228–40.

    Article  Google Scholar 

  44. Mondello S, Sorinola A, Czeiter E, et al. Blood-based protein biomarkers for the management of traumatic brain injuries in adults presenting to emergency departments with mild brain injury: a living systematic review and meta-analysis. J Neurotrauma. 2018.

  45. Oris C, Pereira B, Durif J, et al. The biomarker S100B and mild traumatic brain injury: a meta-analysis. Pediatrics. 2018;141(6):e20180037.

    Article  PubMed  Google Scholar 

  46. Yokobori S, Hosein K, Burks S, et al. Biomarkers for the clinical differential diagnosis in traumatic brain injury—a systematic review. CNS Neurosci Ther. 2013;19(8):556–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lugones M, Parkin G, Bjelosevic S, et al. Blood biomarkers in paediatric mild traumatic brain injury: a systematic review. Neurosci Biobehav Rev. 2018;87:206–17.

    Article  CAS  PubMed  Google Scholar 

  48. Papa L, Ramia MM, Kelly JM, et al. Systematic review of clinical research on biomarkers for pediatric traumatic brain injury. J Neurotrauma. 2013;30(5):324–38.

    Article  PubMed  Google Scholar 

  49. Mercier E, Tardif P, Cameron PA, et al. Prognostic value of S-100β protein for prediction of post-concussion symptoms after a mild traumatic brain injury: systematic review and meta-analysis. J Neurotrauma. 2018;35(4):609–22.

    Article  PubMed  Google Scholar 

  50. Begaz T, Kyriacou DN, Segal J, Bazarian JJ. Serum biochemical markers for post-concussion syndrome in patients with mild traumatic brain injury. J Neurotrauma. 2006;23(8):1201–10.

    Article  PubMed  Google Scholar 

  51. Mercier E, Boutin A, Lauzier F, et al. Predictive value of S-100β protein for prognosis in patients with moderate and severe traumatic brain injury: systematic review and meta-analysis. BMJ Br Med J. 2013;346:f1757.

    Article  Google Scholar 

  52. Salehpoor F, Meshkini A, Razmgiri A, Mahdkhah A. Prognostic serum factors in patients with traumatic brain injury: a systematic review. Neurosurg Q. 2016;26(1):19–36.

    Article  Google Scholar 

  53. Chou S, Robertson C. Monitoring biomarkers of cellular injury and death in acute brain injury. Neurocrit Care. 2014;21:187–214.

    Article  CAS  Google Scholar 

  54. Isgrò MA, Bottoni P, Scatena R. Neuron-specific enolase as a biomarker: biochemical and clinical aspects. In: Scatena R, editor. Advances in cancer biomarkers: from biochemistry to clinic for a critical revision, 2015. Dordrecht: Springer, Netherlands; 2015. p. 125–43.

    Chapter  Google Scholar 

  55. Toman E, Harrisson S, Belli T. Biomarkers in traumatic brain injury: a review. J R Army Med Corps. 2016;162(2):103–8.

    Article  PubMed  Google Scholar 

  56. Neher MD, Keene CN, Rich MC, Moore HB, Stahel PF. Serum biomarkers for traumatic brain injury. South Med J. 2014;107(4):248–55.

    Article  CAS  PubMed  Google Scholar 

  57. Cheng F, Yuan Q, Yang J, Wang W, Liu H. The prognostic value of serum neuron-specific enolase in traumatic brain injury: systematic review and meta-analysis. PLoS ONE. 2014;9(9):e106680.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Mercier E, Boutin A, Shemilt M, et al. Predictive value of neuron-specific enolase for prognosis in patients with moderate or severe traumatic brain injury: a systematic review and meta-analysis. CMAJ open. 2016;4(3):E371–82.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Nakhjavan-Shahraki B, Yousefifard M, Oraii A, Sarveazad A, Hosseini M. Meta-analysis of neuron specific enolase in predicting pediatric brain injury outcomes. EXCLI J. 2017;16:995–1008.

    PubMed  PubMed Central  Google Scholar 

  60. Mercier E, Tardif P-A, Cameron PA, et al. Prognostic value of neuron-specific enolase (NSE) for prediction of post-concussion symptoms following a mild traumatic brain injury: a systematic review. Brain Inj. 2018;32(1):29–40.

    Article  PubMed  Google Scholar 

  61. Sanchis P, Fernández-Gayol O, Vizueta J, et al. Microglial cell-derived interleukin-6 influences behavior and inflammatory response in the brain following traumatic brain injury. Glia. 2020;68(5):999–1016.

    Article  PubMed  Google Scholar 

  62. Jiang L, Hu Y, He X, et al. Breviscapine reduces neuronal injury caused by traumatic brain injury insult: partly associated with suppression of interleukin-6 expression. Neural Regen Res. 2017;12(1):90–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rodney T, Osier N, Gill J. Pro- and anti-inflammatory biomarkers and traumatic brain injury outcomes: a review. Cytokine. 2018;110:248–56.

    Article  CAS  PubMed  Google Scholar 

  64. Zeiler FA, Thelin EP, Czosnyka M, et al. Cerebrospinal Fluid and microdialysis cytokines in severe traumatic brain injury: a scoping systematic review. Front Neurol. 2017;8:331.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Xiong Y, Mahmood A, Chopp M. Current understanding of neuroinflammation after traumatic brain injury and cell-based therapeutic opportunities. Chin J Traumatol. 2018;21(3):137–51.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Zhang D, Gong S, Jin H, et al. Coagulation parameters and risk of progressive hemorrhagic injury after traumatic brain injury: a systematic review and meta-analysis. Biomed Res Int. 2015;2015:261825.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Yuan Q, Sun Y-R, Wu X, et al. Coagulopathy in traumatic brain injury and its correlation with progressive hemorrhagic injury: a systematic review and meta-analysis. J Neurotrauma. 2016;33(14):1279–91.

    Article  PubMed  Google Scholar 

  68. Bobeff EJ, Fortuniak J, Bryszewski B, et al. Mortality after traumatic brain injury in elderly patients: a new scoring system. World Neurosurg. 2019;128:e129–47.

    Article  PubMed  Google Scholar 

  69. Joseph B, Pandit V, Meyer D, et al. The significance of platelet count in traumatic brain injury patients on antiplatelet therapy. J Trauma Acute Care Surg. 2014;77(3):417–21.

    Article  CAS  PubMed  Google Scholar 

  70. Nekludov M, Bellander B-M, Blombäck M, Wallen HN. Platelet dysfunction in patients with severe traumatic brain injury. J Neurotrauma. 2007;24(11):1699–706.

    Article  PubMed  Google Scholar 

  71. Wohlauer MV, Moore EE, Thomas S, et al. Early platelet dysfunction: an unrecognized role in the acute coagulopathy of trauma. J Am Coll Surg. 2012;214(5):739–46.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Hannon MJ, Crowley RK, Behan LA, et al. Acute glucocorticoid deficiency and diabetes insipidus are common after acute traumatic brain injury and predict mortality. J Clin Endocrinol Metab. 2013;98(8):3229–37.

    Article  CAS  PubMed  Google Scholar 

  73. Kgosidialwa O, Agha A. Hypopituitarism post traumatic brain injury (TBI): review. Irish J Med Sci (1971). 2019;188(4):1201–6.

    Article  Google Scholar 

  74. Dimopoulou I, Tsagarakis S, Kouyialis AT, et al. Hypothalamic-pituitary-adrenal axis dysfunction in critically ill patients with traumatic brain injury: Incidence, pathophysiology, and relationship to vasopressor dependence and peripheral interleukin-6 levels*. Soc Crit Care Med. 2004;32(2):404–8.

    Article  CAS  Google Scholar 

  75. Olivecrona Z, Dahlqvist P, Koskinen L-OD. Acute neuro-endocrine profile and prediction of outcome after severe brain injury. Scand J Trauma Resusc Emerg Med. 2013;21(1):33.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Srinivas R, Brown SD, Chang Y-F, Garcia-Fillion P, Adelson PD. Endocrine function in children acutely following severe traumatic brain injury. Child’s Nerv Syst. 2010;26(5):647–53.

    Article  Google Scholar 

  77. Llompart-Pou JA, Raurich JM, Pérez-Bárcena J, et al. Acute hypothalamic–pituitary–adrenal response in traumatic brain injury with and without extracerebral trauma. Neurocrit Care. 2008;9(2):230–6.

    Article  PubMed  Google Scholar 

  78. Kusmenkov T, Braunstein M, Schneider HJ, et al. Initial free cortisol dynamics following blunt multiple trauma and traumatic brain injury: a clinical study. J Int Med Res. 2019;47(3):1185–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Popovic V, Aimaretti G, Casanueva FF, Ghigo E. Hypopituitarism following traumatic brain injury. Growth Horm IGF Res. 2005;15(3):177–84.

    Article  CAS  PubMed  Google Scholar 

  80. Turpeinen U, Hämäläinen E. Determination of cortisol in serum, saliva and urine. Best Pract Res Clin Endocrinol Metab. 2013;27(6):795–801.

    Article  CAS  PubMed  Google Scholar 

  81. Haas T, Fries D, Tanaka KA, et al. Usefulness of standard plasma coagulation tests in the management of perioperative coagulopathic bleeding: is there any evidence? BJA Br J Anaesth. 2014;114(2):217–24.

    Article  PubMed  Google Scholar 

  82. Davenport R, Manson J, De’Ath H, et al. Functional definition and characterization of acute traumatic coagulopathy. Crit Care Med. 2011;39(12):2652–8.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Schiff L, Hadker N, Weiser S, Rausch C. A literature review of the feasibility of glial fibrillary acidic protein as a biomarker for stroke and traumatic brain injury. Mol Diagn Ther. 2012;16(2):79–92.

    Article  CAS  PubMed  Google Scholar 

  84. Luoto TM, Raj R, Posti JP, et al. A systematic review of the usefulness of glial fibrillary acidic protein for predicting acute intracranial lesions following head trauma. Front Neurol. 2017;8:652.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Baratz R, Tweedie D, Wang J-Y, et al. Transiently lowering tumor necrosis factor-α synthesis ameliorates neuronal cell loss and cognitive impairments induced by minimal traumatic brain injury in mice. J Neuroinflammation. 2015;12(1):45.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Chodobski A, Zink BJ, Szmydynger-Chodobska J. Blood-brain barrier pathophysiology in traumatic brain injury. Transl Stroke Res. 2011;2(4):492–516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Soares FMS, Schneider Soares FM, Menezes de Souza N, et al. Interleukin-10 Is an independent biomarker of severe traumatic brain injury prognosis. NeuroImmunoModulation. 2012;19(6):377–85.

    Article  CAS  Google Scholar 

  88. Lagerstedt L, Egea-Guerrero JJ, Rodríguez-Rodríguez A, et al. Early measurement of interleukin-10 predicts the absence of CT scan lesions in mild traumatic brain injury. PLoS ONE. 2018;13(2):0193278.

    Article  Google Scholar 

  89. Sharma R, Laskowitz DT. Biomarkers in traumatic brain injury. Curr Neurol Neurosci Rep. 2012;12(5):560–9.

    Article  CAS  PubMed  Google Scholar 

  90. Agoston DV, Shutes-David A, Peskind ER. Biofluid biomarkers of traumatic brain injury. Brain Inj. 2017;31(9):1195–203.

    Article  PubMed  Google Scholar 

  91. Azar S, Hasan A, Younes R, et al. Biofluid Proteomics and Biomarkers in Traumatic Brain Injury. In: Kobeissy FH, Stevens JSM, editors., et al., Neuroproteomics: Methods and Protocols. New York: Springer; 2017. p. 45–63.

    Chapter  Google Scholar 

  92. Zhou T, Kalanuria A. Cerebral Microdialysis in Neurocritical Care. Current Neurology and Neuroscience Reports. 2018;18(12):101.

    Article  PubMed  Google Scholar 

  93. Thelin EP, Carpenter KLH, Hutchinson PJ, Helmy A. Microdialysis Monitoring in Clinical Traumatic Brain Injury and Its Role in Neuroprotective Drug Development. The AAPS Journal. 2017;19(2):367–76.

    Article  CAS  PubMed  Google Scholar 

  94. Zeiler FA, Thelin EP, Helmy A, et al. A systematic review of cerebral microdialysis and outcomes in TBI: relationships to patient functional outcome, neurophysiologic measures, and tissue outcome. Acta Neurochir. 2017;159(12):2245–73.

    Article  PubMed  Google Scholar 

  95. Marcoux J, McArthur DA, Miller C, et al. Persistent metabolic crisis as measured by elevated cerebral microdialysis lactate-pyruvate ratio predicts chronic frontal lobe brain atrophy after traumatic brain injury. Crit Care Med. 2008;36(10):2871–7.

    Article  CAS  PubMed  Google Scholar 

  96. Zetterberg H, Blennow K. Fluid biomarkers for mild traumatic brain injury and related conditions. Nature Reviews Neurology. 2016;12(10):563–74.

    Article  CAS  PubMed  Google Scholar 

  97. Horton L, Rhodes J, Wilson L. Randomized Controlled Trials in Adult Traumatic Brain Injury: A Systematic Review on the Use and Reporting of Clinical Outcome Assessments. J Neurotrauma. 2018;35(17):2005–14.

    Article  PubMed  Google Scholar 

  98. McMillan T, Wilson L, Ponsford J, et al. The Glasgow Outcome Scale—40 years of application and refinement. Nature Reviews Neurology. 2016;12(8):477–85.

    Article  PubMed  Google Scholar 

  99. Vakil MT, Singh AK. A review of penetrating brain trauma: epidemiology, pathophysiology, imaging assessment, complications, and treatment. Emerg Radiol. 2017;24(3):301–9.

    Article  PubMed  Google Scholar 

  100. Stefanopoulos PK, Hadjigeorgiou GF, Filippakis K, Gyftokostas D. Gunshot wounds: a review of ballistics related to penetrating trauma. Journal of Acute Disease. 2014;3(3):178–85.

    Article  Google Scholar 

  101. Dai J-X, Ma Y-B, Le N-Y, Cao J, Wang Y. Large animal models of traumatic brain injury. Int J Neurosci. 2018;128(3):243–54.

    Article  PubMed  Google Scholar 

  102. Vink R. Large animal models of traumatic brain injury. J Neurosci Res. 2018;96(4):527–35.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Soheil Afsharpour, (Royal College of Surgeons in Ireland) for his editing of the text.

Funding

This study was funded by Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran (No. 39947).

Author information

Authors and Affiliations

Authors

Contributions

MS designed the study, developed the search strategy, and performed the statistical analysis. ME and MS wrote the manuscript. MS, MSN, and AB were involved in critical revision of the manuscript. Other authors performed data screening, acquisition, and appraising the quality of studies. All authors reviewed and approved the final draft.

Corresponding author

Correspondence to Mahdi Sharif-Alhoseini.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

No ethical approval or informed consent was needed for this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edalatfar, M., Piri, S.M., Mehrabinejad, MM. et al. Biofluid Biomarkers in Traumatic Brain Injury: A Systematic Scoping Review. Neurocrit Care 35, 559–572 (2021). https://doi.org/10.1007/s12028-020-01173-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-020-01173-1

Keywords

Navigation