Skip to main content

Advertisement

Log in

Intranasal Insulin Treatment Attenuates Metabolic Distress and Early Brain Injury After Subarachnoid Hemorrhage in Mice

  • Original Work
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Background

Intranasal administration of insulin to the brain bypasses the blood brain barrier (BBB) and can increase cerebral glucose uptake and prevent energy failure. Intranasal insulin treatment has shown neuroprotective effects in multiple central nervous system (CNS) lesions, but the effects of intranasal insulin on the metabolic and pathological process of subarachnoid hemorrhage (SAH) are not clear. This study is designed to explore the effects of intranasal insulin treatment on metabolic distress and early brain injury (EBI) after experimental SAH.

Methods

SAH model was built by endovascular filament perforation method in adult male C57BL/6J mice, and then, insulin was administrated via intranasal route at 0, 24, and 48 h post-SAH. EBI was assessed according to the neurological performance, BBB damage, brain edema, neuroinflammatory reaction, and neuronal apoptosis at each time point. To evaluate metabolic conditions, microdialysis was used to continuously monitor the real-time levels of glucose, pyruvate, and lactate in interstitial fluid (ISF) in living animals. The mRNA and protein expression of glucose transporter-1 and 3 (GLUT-1 and -3) were also tested by RT-PCR and Western blot in brain after SAH.

Results

Compared to vehicle, intranasal insulin treatment promoted the relative mRNA and protein levels of GLUT-1 in SAH brain (0.98 ± 0.020 vs 0.33 ± 0.016 at 24 h, 0.91 ± 0.25 vs 0.21 ± 0.013 at 48 h and 0.94 ± 0.025 vs 0.28 ± 0.015 at 72 h in mRNA/0.96 ± 0.023 vs 0.36 ± 0.015 at 24 h, 0.91 ± 0.022 vs 0.22 ± 0.011 at 48 h and 0.95 ± 0.024 vs 0.27 ± 0.014 at 72 h in protein, n = 8/Group, p < 0.001). Similar results were also observed in GLUT-3. Intranasal insulin reduced the lactate/pyruvate ratio (LPR) and increased ISF glucose level. It also improved neurological dysfunction, BBB damage, and brain edema and attenuated the levels of pro-inflammatory cytokines as well as neuronal apoptosis after SAH.

Conclusions

The intranasal insulin treatment protects brain from EBI possibly via improving metabolic distress after SAH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kusaka G, et al. Signaling pathways for early brain injury after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2004;24(8):916–25.

    Article  CAS  PubMed  Google Scholar 

  2. Pluta RM, et al. Cerebral vasospasm following subarachnoid hemorrhage: time for a new world of thought. Neurol Res. 2009;31(2):151–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Vespa P, et al. Metabolic crisis without brain ischemia is common after traumatic brain injury: a combined microdialysis and positron emission tomography study. J Cereb Blood Flow Metab. 2005;25(6):763–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Marcoux J, et al. Persistent metabolic crisis as measured by elevated cerebral microdialysis lactate-pyruvate ratio predicts chronic frontal lobe brain atrophy after traumatic brain injury. Crit Care Med. 2008;36(10):2871–7.

    Article  CAS  PubMed  Google Scholar 

  5. Stein NR, et al. Early cerebral metabolic crisis after TBI influences outcome despite adequate hemodynamic resuscitation. Neurocrit Care. 2012;17(1):49–57.

    Article  PubMed  Google Scholar 

  6. Kurtz P, et al. Anemia is associated with metabolic distress and brain tissue hypoxia after subarachnoid hemorrhage. Neurocrit Care. 2010;13(1):10–6.

    Article  CAS  PubMed  Google Scholar 

  7. Oddo M, et al. Induced normothermia attenuates cerebral metabolic distress in patients with aneurysmal subarachnoid hemorrhage and refractory Fever. Stroke. 2009;40(5):1913–6.

    Article  PubMed  Google Scholar 

  8. Kurtz P, et al. Systemic glucose variability predicts cerebral metabolic distress and mortality after subarachnoid hemorrhage: a retrospective observational study. Crit Care. 2014;18(3):R89.

    Article  PubMed  PubMed Central  Google Scholar 

  9. de Lima Oliveira M, et al. Brain metabolic crisis in traumatic brain injury: what does it mean? J Neurotrauma. 2014;31(20):1750–1.

    Article  PubMed  Google Scholar 

  10. Schulingkamp RJ, et al. Insulin receptors and insulin action in the brain: review and clinical implications. Neurosci Biobehav Rev. 2000;24(8):855–72.

    Article  CAS  PubMed  Google Scholar 

  11. Plum L, Schubert M, Bruning JC. The role of insulin receptor signaling in the brain. Trends Endocrinol Metab. 2005;16(2):59–65.

    Article  CAS  PubMed  Google Scholar 

  12. Cashion MF, Banks WA, Kastin AJ. Sequestration of centrally administered insulin by the brain: effects of starvation, aluminum, and TNF-alpha. Horm Behav. 1996;30(3):280–6.

    Article  CAS  PubMed  Google Scholar 

  13. Thorne RG, et al. Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience. 2004;127(2):481–96.

    Article  CAS  PubMed  Google Scholar 

  14. Dhuria SV, Hanson LR, Frey WH 2nd. Intranasal delivery to the central nervous system: mechanisms and experimental considerations. J Pharm Sci. 2010;99(4):1654–73.

    Article  CAS  PubMed  Google Scholar 

  15. Lochhead JJ, et al. Rapid transport within cerebral perivascular spaces underlies widespread tracer distribution in the brain after intranasal administration. J Cereb Blood Flow Metab. 2015;35(3):371–81.

    Article  CAS  PubMed  Google Scholar 

  16. Reger MA, et al. Intranasal insulin administration dose-dependently modulates verbal memory and plasma amyloid-beta in memory-impaired older adults. J Alzheimers Dis. 2008;13(3):323–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pang Y, et al. Intranasal insulin protects against substantia nigra dopaminergic neuronal loss and alleviates motor deficits induced by 6-OHDA in rats. Neuroscience. 2016;318:157–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen Y, et al. Intranasal insulin restores insulin signaling, increases synaptic proteins, and reduces Abeta level and microglia activation in the brains of 3xTg-AD mice. Exp Neurol. 2014;261:610–9.

    Article  CAS  PubMed  Google Scholar 

  19. Brabazon F, et al. Intranasal insulin treatment of an experimental model of moderate traumatic brain injury. J Cereb Blood Flow Metab. 2017;37(9):3203–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lioutas VA, et al. Intranasal insulin and insulin-like growth factor 1 as neuroprotectants in acute ischemic stroke. Transl Stroke Res. 2015;6(4):264–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hasegawa Y, et al. Preservation of tropomyosin-related kinase B (TrkB) signaling by sodium orthovanadate attenuates early brain injury after subarachnoid hemorrhage in rats. Stroke. 2011;42(2):477–83.

    Article  CAS  PubMed  Google Scholar 

  22. Sugawara T, et al. A new grading system evaluating bleeding scale in filament perforation subarachnoid hemorrhage rat model. J Neurosci Methods. 2008;167(2):327–34.

    Article  PubMed  Google Scholar 

  23. Quintard H, et al. Improvement of neuroenergetics by hypertonic lactate therapy in patients with traumatic brain injury is dependent on baseline cerebral lactate/pyruvate ratio. J Neurotrauma. 2016;33(7):681–7.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Yan EB, et al. Post-traumatic hypoxia exacerbates neurological deficit, neuroinflammation and cerebral metabolism in rats with diffuse traumatic brain injury. J Neuroinflammation. 2011;8:147–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Marks DR, et al. Awake intranasal insulin delivery modifies protein complexes and alters memory, anxiety, and olfactory behaviors. J Neurosci. 2009;29(20):6734–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen Y, et al. Intranasal insulin prevents anesthesia-induced cognitive impairment and chronic neurobehavioral changes. Front Aging Neurosci. 2017;9:136.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Garcia JH et al. Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats. Statistical validation. Stroke, 1995. 26(4): p. 627–34; discussion 635.

  28. Roof RL, et al. Progesterone rapidly decreases brain edema: treatment delayed up to 24 hours is still effective. Exp Neurol. 1996;138(2):246–51.

    Article  CAS  PubMed  Google Scholar 

  29. Ostrowski RP, Colohan AR, Zhang JH. Molecular mechanisms of early brain injury after subarachnoid hemorrhage. Neurol Res. 2006;28(4):399–414.

    Article  CAS  PubMed  Google Scholar 

  30. Fujii M, et al. Early brain injury, an evolving frontier in subarachnoid hemorrhage research. Transl Stroke Res. 2013;4(4):432–46.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Keep RF, et al. Ischemia-induced endothelial cell dysfunction. Acta Neurochir Suppl. 2005;95:399–402.

    Article  CAS  PubMed  Google Scholar 

  32. Simpson IA, Carruthers A, Vannucci SJ. Supply and demand in cerebral energy metabolism: the role of nutrient transporters. J Cereb Blood Flow Metab. 2007;27(11):1766–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bonkowski D, et al. The CNS microvascular pericyte: pericyte-astrocyte crosstalk in the regulation of tissue survival. Fluids Barriers CNS. 2011;8(1):8.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Armulik A, Abramsson A, Betsholtz C. Endothelial/pericyte interactions. Circ Res. 2005;97(6):512–23.

    Article  CAS  PubMed  Google Scholar 

  35. Devraj K, et al. GLUT-1 glucose transporters in the blood-brain barrier: differential phosphorylation. J Neurosci Res. 2011;89(12):1913–25.

    Article  CAS  PubMed  Google Scholar 

  36. Castro V, et al. Occludin regulates glucose uptake and ATP production in pericytes by influencing AMP-activated protein kinase activity. J Cereb Blood Flow Metab. 2018;38(2):317–32.

    Article  CAS  PubMed  Google Scholar 

  37. Szablewski L. Glucose transporters in brain: in health and in Alzheimer’s disease. J Alzheimers Dis. 2017;55(4):1307–20.

    Article  CAS  PubMed  Google Scholar 

  38. Schlenk F, et al. Hyperglycemia and cerebral glucose in aneurysmal subarachnoid hemorrhage. Intensive Care Med. 2008;34(7):1200–7.

    Article  CAS  PubMed  Google Scholar 

  39. Oertel MF, et al. Cerebral energy failure after subarachnoid hemorrhage: the role of relative hyperglycolysis. J Clin Neurosci. 2007;14(10):948–54.

    Article  CAS  PubMed  Google Scholar 

  40. Fox PT, Raichle ME. Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc Natl Acad Sci U S A. 1986;83(4):1140–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fox PT, et al. Nonoxidative glucose consumption during focal physiologic neural activity. Science. 1988;241(4864):462–4.

    Article  CAS  PubMed  Google Scholar 

  42. Park CR, et al. Intracerebroventricular insulin enhances memory in a passive-avoidance task. Physiol Behav. 2000;68(4):509–14.

    Article  CAS  PubMed  Google Scholar 

  43. de la Monte SM. Intranasal insulin therapy for cognitive impairment and neurodegeneration: current state of the art. Expert Opin Drug Deliv. 2013;10(12):1699–709.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Huang CC, Lee CC, Hsu KS. An investigation into signal transduction mechanisms involved in insulin-induced long-term depression in the CA1 region of the hippocampus. J Neurochem. 2004;89(1):217–31.

    Article  CAS  PubMed  Google Scholar 

  45. Ahmadian G, et al. Tyrosine phosphorylation of GluR2 is required for insulin-stimulated AMPA receptor endocytosis and LTD. EMBO J. 2004;23(5):1040–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yu Q, et al. Intranasal insulin increases synaptic protein expression and prevents anesthesia-induced cognitive deficits through mTOR-eEF2 pathway. J Alzheimers Dis. 2019;70(3):925–36.

    Article  CAS  PubMed  Google Scholar 

  47. Dandona P, et al. Insulin inhibits intranuclear nuclear factor kappaB and stimulates IkappaB in mononuclear cells in obese subjects: evidence for an anti-inflammatory effect? J Clin Endocrinol Metab. 2001;86(7):3257–65.

    CAS  PubMed  Google Scholar 

  48. Aljada A, et al. Insulin inhibits the pro-inflammatory transcription factor early growth response gene-1 (Egr)-1 expression in mononuclear cells (MNC) and reduces plasma tissue factor (TF) and plasminogen activator inhibitor-1 (PAI-1) concentrations. J Clin Endocrinol Metab. 2002;87(3):1419–22.

    Article  CAS  PubMed  Google Scholar 

  49. Spielman LJ, et al. Insulin modulates in vitro secretion of cytokines and cytotoxins by human glial cells. Curr Alzheimer Res. 2015;12(7):684–93.

    Article  CAS  PubMed  Google Scholar 

  50. D’Souza R, et al. Insulin gel as an alternate to parenteral insulin: formulation, preclinical, and clinical studies. AAPS PharmSciTech. 2005;6(2):E184–9.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by Zhejiang Provincial Natural Science Foundation (LY16H090014), Zhejiang Provincial Medical Health and Science and Technology Project Foundation (2020KY667, 2016KYB213, 2020PY018) and Science Planning Project from Science Technology Bureau of Shaoxing (2018C30150).

Author information

Authors and Affiliations

Authors

Contributions

The author requirements have been met, and the final manuscript was approved by all authors.

Corresponding author

Correspondence to Zhen Xu.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Ethical approval/Informed consent

Ethical approval was obtained from the Zhejiang Chinese Medicine University Research Ethics Committee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

12028_2020_1011_MOESM1_ESM.tif

Supplementary Figure 1: Compared to the sham group, the mRNA and protein level of GLUT-3 significantly downregulated from 24 to 72 h after SAH (SUP Fig. 1A, B and C). Intranasal insulin treatment significantly promoted the mRNA and protein levels of GLUT-3 in brain (SUP Fig. 1A, B and C). Data were expressed as mean ± SEM (n = 8/Group, ***p < 0.001 versus sham, ###p < 0.001 versus vehicle). (TIFF 861 kb)

Supplementary Figure 2: Full Western blot gels of GLUT-1 and -3. (TIFF 4038 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, LB., Huang, HD., Zhao, M. et al. Intranasal Insulin Treatment Attenuates Metabolic Distress and Early Brain Injury After Subarachnoid Hemorrhage in Mice. Neurocrit Care 34, 154–166 (2021). https://doi.org/10.1007/s12028-020-01011-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-020-01011-4

Keywords

Navigation