Skip to main content
Log in

Temperature-Related Effects of Adenosine Triphosphate-Activated Microglia on Pro-Inflammatory Factors

  • Translational Research
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Background

Therapeutic hypothermia protects neurons after severe brain injury. Activated microglia produce several neurotoxic factors, such as pro-inflammatory cytokines and nitric oxide (NO), during neuron destruction. Hence, suppression of microglial release of these factors is thought to contribute partly to the neuroprotective effects of hypothermia. After brain insults, adenosine triphosphate (ATP) is released from injured cells and activates microglia. Here, we examined the acute effects of temperature on ATP-activated microglial production of inflammatory factors, and the possible involvement of p38 mitogen-activated protein kinase (p38) underlying such effects.

Methods

Microglia were cultured with ATP at 33, 37, and 39°C, or with ATP in the presence of a p38 inhibitor, SB203580, at 37°C. Cytokine and NO levels, and p38 activation were measured.

Results

Compared to 37°C, TNF-α was reduced at 33°C and augmented at 39°C for 1.5 h. IL-6 was reduced at 33°C for 6 h. NO was reduced at 33°C, but augmented at 39°C for 6 h. p38 was reduced at 33°C for 1 min. SB203580 inhibited ATP-induced TNF-α, IL-6, and NO production.

Conclusion

Lowering temperature rapidly reduced p38 activation and the subsequent p38-regulated production of pro-inflammatory cytokines and NO in ATP-activated microglia, suggesting that attenuation of early phase inflammatory responses via suppression of p38 in microglia is one possible neuroprotective mechanism of therapeutic hypothermia. Temperature elevation increased TNF-α and NO production in these cells. These temperature-dependent changes imply that monitoring of TNF-α and NO in the cerebrospinal fluid during the early phase might be useful as biomarkers for responses to therapeutic hypothermia and hyperthermia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bell MJ, Kochanek PM, Doughty LA, et al. Interleukin-6 and interleukin-10 in cerebrospinal fluid after severe traumatic brain injury in children. J Neurotrauma. 1997;14:451–7.

    Article  PubMed  CAS  Google Scholar 

  2. Buttram SD, Wisniewski SR, Jackson EK, et al. Multiplex assessment of cytokine and chemokine levels in cerebrospinal fluid following severe pediatric traumatic brain injury: effects of moderate hypothermia. J Neurotrauma. 2007;24:1707–17.

    Article  PubMed  Google Scholar 

  3. Clark RS, Kochanek PM, Obrist WD, et al. Cerebrospinal fluid and plasma nitrite and nitrate concentrations after head injury in humans. Crit Care Med. 1996;24:1243–51.

    Article  PubMed  CAS  Google Scholar 

  4. Marion DW, Penrod LE, Kelsey SF, et al. Treatment of traumatic brain injury with moderate hypothermia. N Engl J Med. 1997;336:540–6.

    Article  PubMed  CAS  Google Scholar 

  5. McClain C, Cohen D, Phillips R, Ott L, Young B. Increased plasma and ventricular fluid interleukin-6 levels in patients with head injury. J Lab Clin Med. 1991;118:225–31.

    PubMed  CAS  Google Scholar 

  6. Whalen MJ, Carlos TM, Kochanek PM, et al. Interleukin-8 is increased in cerebrospinal fluid of children with severe head injury. Crit Care Med. 2000;28:929–34.

    Article  PubMed  CAS  Google Scholar 

  7. Ott L, McClain CJ, Gillespie M, Young B. Cytokines and metabolic dysfunction after severe head injury. J Neurotrauma. 1994;11:447–72.

    Article  PubMed  CAS  Google Scholar 

  8. Lancelot E, Lecanu L, Revaud ML, Boulu RG, Plotkine M, Callebert J. Glutamate induces hydroxyl radical formation in vivo via activation of nitric oxide synthase in Sprague-Dawley rats. Neurosci Lett. 1998;242:131–4.

    Article  PubMed  CAS  Google Scholar 

  9. Minghetti L, Levi G. Microglia as effector cells in brain damage and repair: focus on prostanoids and nitric oxide. Prog Neurobiol. 1998;54:99–125.

    Article  PubMed  CAS  Google Scholar 

  10. Woodroofe MN, Sarna GS, Wadhwa M, et al. Detection of interleukin-1 and interleukin-6 in adult rat brain, following mechanical injury, by in vivo microdialysis: evidence of a role for microglia in cytokine production. J Neuroimmunol. 1991;33:227–36.

    Article  PubMed  CAS  Google Scholar 

  11. Bernard SA, Gray TW, Buist MD, et al. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med. 2002;346:557–63.

    Article  PubMed  Google Scholar 

  12. Aibiki M, Maekawa S, Ogura S, Kinoshita Y, Kawai N, Yokono S. Effect of moderate hypothermia on systemic and internal jugular plasma IL-6 levels after traumatic brain injury in humans. J Neurotrauma. 1999;16:225–32.

    Article  PubMed  CAS  Google Scholar 

  13. Allan SM, Rothwell NJ. Cytokines and acute neurodegeneration. Nat Rev Neurosci. 2001;2:734–44.

    Article  PubMed  CAS  Google Scholar 

  14. Si QS, Nakamura Y, Kataoka K. Hypothermic suppression of microglial activation in culture: inhibition of cell proliferation and production of nitric oxide and superoxide. Neuroscience. 1997;81:223–9.

    Article  PubMed  CAS  Google Scholar 

  15. Maekawa S, Aibiki M, Si QS, Nakamura Y, Shirakawa Y, Kataoka K. Differential effects of lowering culture temperature on mediator release from lipopolysaccharide-stimulated neonatal rat microglia. Crit Care Med. 2002;30:2700–4.

    Article  PubMed  CAS  Google Scholar 

  16. Gibbons H, Sato TA, Dragunow M. Hypothermia suppresses inducible nitric oxide synthase and stimulates cyclooxygenase-2 in lipopolysaccharide stimulated BV-2 cells. Brain Res Mol Brain Res. 2003;110:63–75.

    Article  PubMed  CAS  Google Scholar 

  17. Matsui T, Kakeda T. IL-10 production is reduced by hypothermia but augmented by hyperthermia in rat microglia. J Neurotrauma. 2008;25:709–15.

    Article  PubMed  Google Scholar 

  18. Davalos D, Grutzendler J, Yang G, et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci. 2005;8:52–8.

    Article  Google Scholar 

  19. Fields RD, Stevens-Graham B. New insights into neuron-glia communication. Science. 2002;298:556–62.

    Article  PubMed  CAS  Google Scholar 

  20. Franke H, Günther A, Grosche J, et al. P2X7 receptor expression after ischemia in the cerebral cortex of rats. J Neuropathol Exp Neurol. 2004;63:686–99.

    PubMed  CAS  Google Scholar 

  21. Hide I, Tanaka M, Inoue A, et al. Extracellular ATP triggers tumor necrosis factor-alpha release from rat microglia. J Neurochem. 2000;75:965–72.

    Article  PubMed  CAS  Google Scholar 

  22. Ohtani Y, Minami M, Satoh M. Expression of inducible nitric oxide synthase mRNA and production of nitric oxide are induced by adenosine triphosphate in cultured rat microglia. Neurosci Lett. 2000;293:72–4.

    Article  PubMed  CAS  Google Scholar 

  23. Shigemoto-Mogami Y, Koizumi S, Tsuda M, Ohsawa K, Kohsaka S, Inoue K. Mechanisms underlying extracellular ATP-evoked interleukin-6 release in mouse microglial cell line, MG-5. J Neurochem. 2001;78:1339–49.

    Article  PubMed  CAS  Google Scholar 

  24. Soukup J, Zauner A, Doppenberg EM, et al. The importance of brain temperature in patients after severe head injury: relationship to intracranial pressure, cerebral perfusion pressure, cerebral blood flow, and outcome. J Neurotrauma. 2002;19:559–71.

    Article  PubMed  Google Scholar 

  25. Koistinaho M, Koistinaho J. Role of p38 and p44/42 mitogen-activated protein kinases in microglia. Glia. 2002;40:175–83.

    Article  PubMed  Google Scholar 

  26. Matsui T, Svensson CI, Hirata Y, Mizobata K, Hua XY, Yaksh TL. Release of prostaglandin E(2) and nitric oxide from spinal microglia is dependent on activation of p38 mitogen-activated protein kinase. Anesth Analg. 2010;111:554–60.

    Article  PubMed  CAS  Google Scholar 

  27. Kumar S, Boehm J, Lee JC. p38 MAP kinases: key signalling molecules as therapeutic targets for inflammatory diseases. Nat Rev Drug Discov. 2003;2:717–26.

    Article  PubMed  CAS  Google Scholar 

  28. Nakamura Y, Si QS, Kataoka K. Lipopolysaccharide-induced microglial activation in culture: temporal profiles of morphological change and release of cytokines and nitric oxide. Neurosci Res. 1999;35:95–100.

    Article  PubMed  CAS  Google Scholar 

  29. Hua XY, Svensson CI, Matsui T, Fitzsimmons B, Yaksh TL, Webb M. Intrathecal minocycline attenuates peripheral inflammation-induced hyperalgesia by inhibiting p38 MAPK in spinal microglia. Eur J Neurosci. 2005;22:2431–40.

    Article  PubMed  Google Scholar 

  30. Yamaguchi S, Nakahara K, Miyagi T, Tokutomi T, Shigemori M. Neurochemical monitoring in the management of severe head-injured patients with hypothermia. Neurol Res. 2000;22:657–64.

    PubMed  CAS  Google Scholar 

  31. Clifton GL, Jiang JY, Lyeth BG, Jenkins LW, Hamm RJ, Hayes RL. Marked protection by moderate hypothermia after experimental traumatic brain injury. J Cereb Blood Flow Metab. 1991;11:114–21.

    Article  PubMed  CAS  Google Scholar 

  32. Minamisawa H, Smith ML, Siesjo BK. The effect of mild hyperthermia and hypothermia on brain damage following 5, 10, and 15 minutes of forebrain ischemia. Ann Neurol. 1990;28:26–33.

    Article  PubMed  CAS  Google Scholar 

  33. Kossmann T, Hans V, Imhof HG, Trentz O, Morganti-Kossmann MC. Interleukin-6 released in human cerebrospinal fluid following traumatic brain injury may trigger nerve growth factor production in astrocytes. Brain Res. 1996;713:143–52.

    Article  PubMed  CAS  Google Scholar 

  34. Cooper ZA, Ghosh A, Gupta A, et al. Febrile-range temperature modifies cytokine gene expression in LPS-stimulated macrophages by differentially modifying NF-{kappa}B recruitment to cytokine gene promoters. Am J Physiol Cell Physiol. 2010;298:C171–81.

    Article  PubMed  CAS  Google Scholar 

  35. Ensor JE, Wiener SM, McCrea KA, Viscardi RM, Crawford EK, Hasday JD. Differential effects of hyperthermia on macrophage interleukin-6 and tumor necrosis factor-alpha expression. Am J Physiol. 1994;266:C967–74.

    PubMed  CAS  Google Scholar 

  36. Fairchild KD, Viscardi RM, Hester L, Singh IS, Hasday JD. Effects of hypothermia and hyperthermia on cytokine production by cultured human mononuclear phagocytes from adults and newborns. J Interferon Cytokine Res. 2000;20:1049–55.

    Article  PubMed  CAS  Google Scholar 

  37. Goldring CE, Reveneau S, Chantome A, et al. Heat shock enhances transcriptional activation of the murine-inducible nitric oxide synthase gene. FASEB J. 2000;14:2393–5.

    PubMed  CAS  Google Scholar 

  38. Takii R, Inouye S, Fujimoto M, et al. Heat shock transcription factor 1 inhibits expression of IL-6 through activating transcription factor 3. J Immunol. 2010;184:1041–8.

    Article  PubMed  CAS  Google Scholar 

  39. Suzuki T, Hide I, Ido K, Kohsaka S, Inoue K, Nakata Y. Production and release of neuroprotective tumor necrosis factor by P2X7 receptor-activated microglia. J Neurosci. 2004;24:1–7.

    Article  PubMed  CAS  Google Scholar 

  40. Xie Z, Smith CJ, Van Eldik LJ. Activated glia induce neuron death via MAP kinase signaling pathways involving JNK and p38. Glia. 2004;45:170–9.

    Article  PubMed  Google Scholar 

  41. de Waal Malefyt R, Abrams J, Bennett B, Figdor CG, de Vries JE. Interleukin 10 (IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes. J Exp Med. 1991;174:1209–20.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported in part by grants from the Ministry of Education, Culture, Sports, Science, and Technology of Japan, Grant-in-Aid for Young Scientists (B), No. 20791077 to T. M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomohiro Matsui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsui, T., Motoki, Y., Inomoto, T. et al. Temperature-Related Effects of Adenosine Triphosphate-Activated Microglia on Pro-Inflammatory Factors. Neurocrit Care 17, 293–300 (2012). https://doi.org/10.1007/s12028-011-9639-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-011-9639-z

Keywords

Navigation