Skip to main content

Advertisement

Log in

Dissecting the role of dendritic cells in simian immunodeficiency virus infection and AIDS

  • UNIVERSITY OF PITTSBURGH IMMUNOLOGY 2011
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Human immunodeficiency virus (HIV) infection is associated with the loss of the two principal types of dendritic cell (DC), myeloid DC (mDC) and plasmacytoid DC (pDC), but the mechanism of this loss and its relationship to AIDS pathogenesis remain ill-defined. The nonhuman primate is a powerful model to dissect this response for several reasons. Both DC subsets have been well characterized in nonhuman primates and shown to have strikingly similar phenotypic and functional characteristics to their counterparts in the human. Moreover, decline of mDC and pDC occurs in rhesus macaques with end-stage simian immunodeficiency virus (SIV) infection, the model of HIV infection in humans. In this brief review, we discuss what is known about DC subsets in pathogenic and nonpathogenic nonhuman primate models of HIV infection and highlight the advances and controversies that currently exist in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hirsch VM, Lifson JD. Simian immunodeficiency virus infection of monkeys as a model system for the study of AIDS pathogenesis, treatment, and prevention. Adv Pharmacol. 2000;49:437–77.

    PubMed  CAS  Google Scholar 

  2. Smith SM, Holland B, Russo C, et al. Retrospective analysis of viral load and SIV antibody responses in rhesus macaques infected with pathogenic SIV: predictive value for disease progression. AIDS Res Hum Retroviruses. 1999;15:1691–701.

    PubMed  CAS  Google Scholar 

  3. Hirsch VM, Johnson PR. Pathogenic diversity of simian immunodeficiency viruses. Virus Res. 1994;32:183–203.

    PubMed  CAS  Google Scholar 

  4. Letvin NL, King NW. Immunologic and pathologic manifestations of the infection of rhesus monkeys with simian immunodeficiency virus of macaques. J Acquir Immune Defic Syndr. 1990;3:1023–40.

    PubMed  CAS  Google Scholar 

  5. Watson A, Ranchalis J, Travis B, et al. Plasma viremia in macaques infected with simian immunodeficiency virus: plasma viral load early in infection predicts survival. J Virol. 1997;71:284–90.

    PubMed  CAS  Google Scholar 

  6. Liovat AS, Jacquelin B, Ploquin MJ, Barre-Sinoussi F, Muller-Trutwin MC. African non human primates infected by SIV—why don’t they get sick? Lessons from studies on the early phase of non-pathogenic SIV infection. Curr HIV Res. 2009;7:39–50.

    PubMed  CAS  Google Scholar 

  7. Paiardini M, Pandrea I, Apetrei C, Silvestri G. Lessons learned from the natural hosts of HIV-related viruses. Annu Rev Med. 2009;60:485–95.

    PubMed  CAS  Google Scholar 

  8. Pandrea I, Sodora DL, Silvestri G, Apetrei C. Into the wild: simian immunodeficiency virus (SIV) infection in natural hosts. Trends Immunol. 2008;29:419–28.

    PubMed  CAS  Google Scholar 

  9. Sodora DL, Allan JS, Apetrei C, et al. Toward an AIDS vaccine: lessons from natural simian immunodeficiency virus infections of African nonhuman primate hosts. Nat Med. 2009;15:861–5.

    PubMed  CAS  Google Scholar 

  10. Abel K, Alegria-Hartman MJ, Rothaeusler K, Marthas M, Miller CJ. The relationship between simian immunodeficiency virus RNA levels and the mRNA levels of alpha/beta interferons (IFN-alpha/beta) and IFN-alpha/beta-inducible Mx in lymphoid tissues of rhesus macaques during acute and chronic infection. J Virol. 2002;76:8433–45.

    PubMed  CAS  Google Scholar 

  11. Malleret B, Maneglier B, Karlsson I, et al. Primary infection with simian immunodeficiency virus: plasmacytoid dendritic cell homing to lymph nodes, type I interferon, and immune suppression. Blood. 2008;112:4598–608.

    PubMed  CAS  Google Scholar 

  12. Stacey AR, Norris PJ, Qin L, et al. Induction of a striking systemic cytokine cascade prior to peak viremia in acute human immunodeficiency virus type 1 infection, in contrast to more modest and delayed responses in acute hepatitis B and C virus infections. J Virol. 2009;83:3719–33.

    PubMed  CAS  Google Scholar 

  13. Sodora DL, Silvestri G. Immune activation and AIDS pathogenesis. Aids. 2008;22:439–46.

    PubMed  Google Scholar 

  14. Jacquelin B, Mayau V, Targat B, et al. Nonpathogenic SIV infection of African green monkeys induces a strong but rapidly controlled type I IFN response. J Clin Invest. 2009;119:3544–55.

    PubMed  CAS  Google Scholar 

  15. Bosinger SE, Li Q, Gordon SN, et al. Global genomic analysis reveals rapid control of a robust innate response in SIV-infected sooty mangabeys. J Clin Invest. 2009;119:3556–72.

    PubMed  CAS  Google Scholar 

  16. Lederer S, Favre D, Walters KA, et al. Transcriptional profiling in pathogenic and non-pathogenic SIV infections reveals significant distinctions in kinetics and tissue compartmentalization. PLoS Pathog. 2009;5:e1000296.

    PubMed  Google Scholar 

  17. Boasso A, Herbeuval JP, Hardy AW, et al. HIV inhibits CD4 + T cell proliferation by inducing indoleamine 2,3-dioxygenase in plasmacytoid dendritic cells. Blood. 2007;109:3351–9.

    PubMed  CAS  Google Scholar 

  18. Manches O, Bhardwaj N. Resolution of immune activation defines nonpathogenic SIV infection. J Clin Invest. 2009;119:3512–5.

    PubMed  CAS  Google Scholar 

  19. Deeks SG, Kitchen CM, Liu L, et al. Immune activation set point during early HIV infection predicts subsequent CD4 + T-cell changes independent of viral load. Blood. 2004;104:942–7.

    PubMed  CAS  Google Scholar 

  20. Fahey JL, Taylor JM, Manna B, et al. Prognostic significance of plasma markers of immune activation, HIV viral load and CD4 T-cell measurements. Aids. 1998;12:1581–90.

    PubMed  CAS  Google Scholar 

  21. Giorgi JV, Hultin LE, McKeating JA, et al. Shorter survival in advanced human immunodeficiency virus type 1 infection is more closely associated with T lymphocyte activation than with plasma virus burden or virus chemokine coreceptor usage. J Infect Dis. 1999;179:859–70.

    PubMed  CAS  Google Scholar 

  22. Hazenberg MD, Otto SA, van Benthem BH, et al. Persistent immune activation in HIV-1 infection is associated with progression to AIDS. AIDS. 2003;17:1881–8.

    PubMed  Google Scholar 

  23. Shortman K, Liu YJ. Mouse and human dendritic cell subtypes. Nat Rev Immunol. 2002;2:151–61.

    PubMed  CAS  Google Scholar 

  24. Brown KN, Barratt-Boyes SM. Surface phenotype and rapid quantification of blood dendritic cell subsets in the rhesus macaque. J Med Primatol. 2009;38:272–8.

    PubMed  Google Scholar 

  25. Brown KN, Trichel A, Barratt-Boyes SM. Parallel loss of myeloid and plasmacytoid dendritic cells from blood and lymphoid tissue in simian AIDS. J Immunol. 2007;178:6958–67.

    PubMed  CAS  Google Scholar 

  26. Coates PT, Barratt-Boyes SM, Zhang L, et al. Dendritic cell subsets in blood and lymphoid tissue of rhesus monkeys and their mobilization with Flt3 ligand. Blood. 2003;102:2513–21.

    PubMed  CAS  Google Scholar 

  27. Diop OM, Ploquin MJ, Mortara L, et al. Plasmacytoid dendritic cell dynamics and alpha interferon production during Simian immunodeficiency virus infection with a nonpathogenic outcome. J Virol. 2008;82:5145–52.

    PubMed  CAS  Google Scholar 

  28. Teleshova N, Kenney J, Jones J, et al. CpG-C immunostimulatory oligodeoxyribonucleotide activation of plasmacytoid dendritic cells in rhesus macaques to augment the activation of IFN-gamma-secreting simian immunodeficiency virus-specific T cells. J Immunol. 2004;173:1647–57.

    PubMed  CAS  Google Scholar 

  29. Xu H, Wang X, Pahar B, et al. Increased B7-H1 expression on dendritic cells correlates with programmed death 1 expression on T cells in simian immunodeficiency virus-infected macaques and may contribute to T cell dysfunction and disease progression. J Immunol. 2010;185:7340–8.

    PubMed  CAS  Google Scholar 

  30. Teleshova N, Jones J, Kenney J, et al. Short-term Flt3L treatment effectively mobilizes functional macaque dendritic cells. J Leukoc Biol. 2004;75:1102–10.

    PubMed  CAS  Google Scholar 

  31. Cella M, Jarrossay D, Facchetti F, et al. Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. Nat Med. 1999;5:919–23.

    PubMed  CAS  Google Scholar 

  32. Yoneyama H, Matsuno K, Zhang Y, et al. Evidence for recruitment of plasmacytoid dendritic cell precursors to inflamed lymph nodes through high endothelial venules. Int Immunol. 2004;16:915–28.

    PubMed  CAS  Google Scholar 

  33. Yoneyama H, Matsuno K, Toda E, et al. Plasmacytoid DCs help lymph node DCs to induce anti-HSV CTLs. J Exp Med. 2005;202:425–35.

    PubMed  CAS  Google Scholar 

  34. Sallusto F, Schaerli P, Loetscher P, et al. Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation. Eur J Immunol. 1998;28:2760–9.

    PubMed  CAS  Google Scholar 

  35. Colonna M, Trinchieri G, Liu YJ. Plasmacytoid dendritic cells in immunity. Nat Immunol. 2004;5:1219–26.

    PubMed  CAS  Google Scholar 

  36. Jaehn PS, Zaenker KS, Schmitz J, Dzionek A. Functional dichotomy of plasmacytoid dendritic cells: antigen-specific activation of T cells versus production of type I interferon. Eur J Immunol. 2008;38:1822–32.

    PubMed  CAS  Google Scholar 

  37. McKenna K, Beignon AS, Bhardwaj N. Plasmacytoid dendritic cells: linking innate and adaptive immunity. J Virol. 2005;79:17–27.

    PubMed  CAS  Google Scholar 

  38. Mandl JN, Barry AP, Vanderford TH, et al. Divergent TLR7 and TLR9 signaling and type I interferon production distinguish pathogenic and nonpathogenic AIDS virus infections. Nat Med. 2008;14:1077–87.

    PubMed  CAS  Google Scholar 

  39. Barron MA, Blyveis N, Palmer BE, MaWhinney S, Wilson CC. Influence of plasma viremia on defects in number and immunophenotype of blood dendritic cell subsets in human immunodeficiency virus 1-infected individuals. J Infect Dis. 2003;187:26–37.

    PubMed  Google Scholar 

  40. Donaghy H, Pozniak A, Gazzard B, et al. Loss of blood CD11c(+) myeloid and CD11c(−) plasmacytoid dendritic cells in patients with HIV-1 infection correlates with HIV-1 RNA virus load. Blood. 2001;98:2574–6.

    PubMed  CAS  Google Scholar 

  41. Feldman S, Stein D, Amrute S, et al. Decreased interferon-alpha production in HIV-infected patients correlates with numerical and functional deficiencies in circulating type 2 dendritic cell precursors. Clin Immunol. 2001;101:201–10.

    PubMed  CAS  Google Scholar 

  42. Grassi F, Hosmalin A, McIlroy D, et al. Depletion in blood CD11c-positive dendritic cells from HIV-infected patients. AIDS. 1999;13:759–66.

    PubMed  CAS  Google Scholar 

  43. Killian MS, Fujimura SH, Hecht FM, Levy JA. Similar changes in plasmacytoid dendritic cell and CD4 T-cell counts during primary HIV-1 infection and treatment. AIDS. 2006;20:1247–52.

    PubMed  CAS  Google Scholar 

  44. Pacanowski J, Kahi S, Baillet M, et al. Reduced blood CD123 + (lymphoid) and CD11c + (myeloid) dendritic cell numbers in primary HIV-1 infection. Blood. 2001;98:3016–21.

    PubMed  CAS  Google Scholar 

  45. Soumelis V, Scott I, Gheyas F, et al. Depletion of circulating natural type 1 interferon-producing cells in HIV-infected AIDS patients. Blood. 2001;98:906–12.

    PubMed  CAS  Google Scholar 

  46. Knight SC, Patterson S. Bone marrow-derived dendritic cells, infection with human immunodeficiency virus, and immunopathology. Annu Rev Immunol. 1997;15:593–615.

    PubMed  CAS  Google Scholar 

  47. Macatonia SE, Lau R, Patterson S, Pinching AJ, Knight SC. Dendritic cell infection, depletion and dysfunction in HIV-infected individuals. Immunology. 1990;71:38–45.

    PubMed  CAS  Google Scholar 

  48. Chehimi J, Campbell DE, Azzoni L, et al. Persistent decreases in blood plasmacytoid dendritic cell number and function despite effective highly active antiretroviral therapy and increased blood myeloid dendritic cells in HIV-infected individuals. J Immunol. 2002;168:4796–801.

    PubMed  CAS  Google Scholar 

  49. Finke JS, Shodell M, Shah K, Siegal FP, Steinman RM. Dendritic cell numbers in the blood of HIV-1 infected patients before and after changes in antiretroviral therapy. J Clin Immunol. 2004;24:647–52.

    PubMed  Google Scholar 

  50. Schmidt B, Fujimura SH, Martin JN, Levy JA. Variations in plasmacytoid dendritic cell (PDC) and myeloid dendritic cell (MDC) levels in HIV-infected subjects on and off antiretroviral therapy. J Clin Immunol. 2006;26:55–64.

    PubMed  Google Scholar 

  51. Nilsson J, Boasso A, Velilla PA, et al. HIV-1-driven regulatory T-cell accumulation in lymphoid tissues is associated with disease progression in HIV/AIDS. Blood. 2006;108:3808–17.

    PubMed  CAS  Google Scholar 

  52. Almeida M, Cordero M, Almeida J, Orfao A. Different subsets of peripheral blood dendritic cells show distinct phenotypic and functional abnormalities in HIV-1 infection. AIDS. 2005;19:261–71.

    PubMed  CAS  Google Scholar 

  53. Campillo-Gimenez L, Laforge M, Fay M, et al. Non pathogenesis of SIV infection is associated with reduced inflammation and recruitment of plasmacytoid dendritic cells to lymph nodes, not to lack of an interferon type I response, during the acute phase. J Virol. 2009.

  54. Cavaleiro R, Baptista AP, Soares RS, et al. Major depletion of plasmacytoid dendritic cells in HIV-2 infection, an attenuated form of HIV disease. PLoS Pathog. 2009;5:e1000667.

    PubMed  Google Scholar 

  55. Biancotto A, Grivel JC, Iglehart SJ, et al. Abnormal activation and cytokine spectra in lymph nodes of people chronically infected with HIV-1. Blood. 2007;109:4272–9.

    PubMed  CAS  Google Scholar 

  56. Dillon SM, Robertson KB, Pan SC, et al. Plasmacytoid and myeloid dendritic cells with a partial activation phenotype accumulate in lymphoid tissue during asymptomatic chronic HIV-1 infection. J Acquir Immune Defic Syndr. 2008;48:1–12.

    PubMed  CAS  Google Scholar 

  57. Krathwohl MD, Schacker TW, Anderson JL. Abnormal presence of semimature dendritic cells that induce regulatory T cells in HIV-infected subjects. J Infect Dis. 2006;193:494–504.

    PubMed  CAS  Google Scholar 

  58. Wijewardana V, Soloff AC, Liu X, Brown KN, Barratt-Boyes SM. Early myeloid dendritic cell dysregulation is predictive of disease progression in simian immunodeficiency virus infection. PLoS Pathog. 2010;6:e1001235.

    PubMed  CAS  Google Scholar 

  59. Barratt-Boyes SM, Wijewardana V. A divergent myeloid dendritic cell response at virus set-point predicts disease outcome in SIV-infected rhesus macaques. J Med Primatol. (In press).

  60. Brown KN, Wijewardana V, Liu X, Barratt-Boyes SM. Rapid influx and death of plasmacytoid dendritic cells in lymph nodes mediate depletion in acute simian immunodeficiency virus infection. PLoS Pathog. 2009;5:e1000413.

    PubMed  Google Scholar 

  61. Graziosi C, Gantt KR, Vaccarezza M, et al. Kinetics of cytokine expression during primary human immunodeficiency virus type 1 infection. Proc Natl Acad Sci USA. 1996;93:4386–91.

    PubMed  CAS  Google Scholar 

  62. Barratt-Boyes SM, Wijewardana V, Brown KN. In acute pathogenic SIV infection plasmacytoid dendritic cells are depleted from blood and lymph nodes despite mobilization. J Med Primatol. 2010;39:235–42.

    PubMed  Google Scholar 

  63. Fong L, Mengozzi M, Abbey NW, Herndier BG, Engleman EG. Productive infection of plasmacytoid dendritic cells with human immunodeficiency virus type 1 is triggered by CD40 ligation. J Virol. 2002;76:11033–41.

    PubMed  CAS  Google Scholar 

  64. Lore K, Smed-Sorensen A, Vasudevan J, Mascola JR, Koup RA. Myeloid and plasmacytoid dendritic cells transfer HIV-1 preferentially to antigen-specific CD4 + T cells. J Exp Med. 2005;201:2023–33.

    PubMed  CAS  Google Scholar 

  65. Patterson S, Rae A, Hockey N, Gilmour J, Gotch F. Plasmacytoid dendritic cells are highly susceptible to human immunodeficiency virus type 1 infection and release infectious virus. J Virol. 2001;75:6710–3.

    PubMed  CAS  Google Scholar 

  66. Meyers JH, Justement JS, Hallahan CW, et al. Impact of HIV on cell survival and antiviral activity of plasmacytoid dendritic cells. PLoS One. 2007;2:e458.

    PubMed  Google Scholar 

  67. Day CL, Kaufmann DE, Kiepiela P, et al. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature. 2006;443:350–4.

    PubMed  CAS  Google Scholar 

  68. Manches O, Munn D, Fallahi A, et al. HIV-activated human plasmacytoid DCs induce Tregs through an indoleamine 2,3-dioxygenase-dependent mechanism. J Clin Invest. 2008;118:3431–9.

    PubMed  CAS  Google Scholar 

  69. Suchard MS, Mayne E, Green VA, et al. FOXP3 expression is upregulated in CD4T cells in progressive HIV-1 infection and is a marker of disease severity. PLoS One. 2010;5:e11762.

    PubMed  Google Scholar 

  70. Qin S, Sui Y, Soloff AC, et al. Chemokine and cytokine mediated loss of regulatory T cells in lymph nodes during pathogenic simian immunodeficiency virus infection. J Immunol. 2008;180:5530–6.

    PubMed  CAS  Google Scholar 

  71. Favre D, Lederer S, Kanwar B, et al. Critical loss of the balance between Th17 and T regulatory cell populations in pathogenic SIV infection. PLoS Pathog. 2009;5:e1000295.

    PubMed  Google Scholar 

  72. Jarrossay D, Napolitani G, Colonna M, Sallusto F, Lanzavecchia A. Specialization and complementarity in microbial molecule recognition by human myeloid and plasmacytoid dendritic cells. Eur J Immunol. 2001;31:3388–93.

    PubMed  CAS  Google Scholar 

  73. Kadowaki N, Ho S, Antonenko S, et al. Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens. J Exp Med. 2001;194:863–9.

    PubMed  CAS  Google Scholar 

  74. Beignon AS, McKenna K, Skoberne M, et al. Endocytosis of HIV-1 activates plasmacytoid dendritic cells via Toll-like receptor-viral RNA interactions. J Clin Invest. 2005;115:3265–75.

    PubMed  CAS  Google Scholar 

  75. Fonteneau JF, Larsson M, Beignon AS, et al. Human immunodeficiency virus type 1 activates plasmacytoid dendritic cells and concomitantly induces the bystander maturation of myeloid dendritic cells. J Virol. 2004;78:5223–32.

    PubMed  CAS  Google Scholar 

  76. Meier A, Alter G, Frahm N, et al. MyD88-dependent immune activation mediated by human immunodeficiency virus type 1-encoded Toll-like receptor ligands. J Virol. 2007;81:8180–91.

    PubMed  CAS  Google Scholar 

  77. Altfeld M, Fadda L, Frleta D, Bhardwaj N. DCs and NK cells: critical effectors in the immune response to HIV-1. Nat Rev Immunol. 2011;11:176–86.

    PubMed  CAS  Google Scholar 

  78. Fitzgerald-Bocarsly P, Jacobs ES. Plasmacytoid dendritic cells in HIV infection: striking a delicate balance. J Leukoc Biol. 2010;87:609–20.

    PubMed  CAS  Google Scholar 

  79. Cervantes-Barragan L, Zust R, Weber F, et al. Control of coronavirus infection through plasmacytoid dendritic-cell-derived type I interferon. Blood. 2007;109:1131–7.

    PubMed  CAS  Google Scholar 

  80. Lund JM, Linehan MM, Iijima N, Iwasaki A. Cutting edge: plasmacytoid dendritic cells provide innate immune protection against mucosal viral infection in situ. J Immunol. 2006;177:7510–4.

    PubMed  CAS  Google Scholar 

  81. Smit JJ, Rudd BD, Lukacs NW. Plasmacytoid dendritic cells inhibit pulmonary immunopathology and promote clearance of respiratory syncytial virus. J Exp Med. 2006;203:1153–9.

    PubMed  CAS  Google Scholar 

  82. Swiecki M, Gilfillan S, Vermi W, Wang Y, Colonna M. Plasmacytoid dendritic cell ablation impacts early interferon responses and antiviral NK and CD8(+) T cell accrual. Immunity. 2010;33:955–66.

    PubMed  CAS  Google Scholar 

  83. Boasso A, Shearer GM. Chronic innate immune activation as a cause of HIV-1 immunopathogenesis. Clin Immunol. 2008;126:235–42.

    PubMed  CAS  Google Scholar 

  84. Herbeuval JP, Shearer GM. HIV-1 immunopathogenesis: how good interferon turns bad. Clin Immunol. 2007;123:121–8.

    PubMed  CAS  Google Scholar 

  85. Sedaghat AR, German J, Teslovich TM, et al. Chronic CD4 + T-cell activation and depletion in human immunodeficiency virus type 1 infection: type I interferon-mediated disruption of T-cell dynamics. J Virol. 2008;82:1870–83.

    PubMed  CAS  Google Scholar 

  86. O’Brien M, Manches O, Sabado RL, et al. Spatiotemporal trafficking of HIV in human plasmacytoid dendritic cells defines a persistently IFN-alpha-producing and partially matured phenotype. J Clin Invest. 2011;121:1088–101.

    PubMed  Google Scholar 

  87. Farzadegan H, Hoover DR, Astemborski J, et al. Sex differences in HIV-1 viral load and progression to AIDS. Lancet. 1998;352:1510–4.

    PubMed  CAS  Google Scholar 

  88. Gandhi M, Bacchetti P, Miotti P, et al. Does patient sex affect human immunodeficiency virus levels? Clin Infect Dis. 2002;35:313–22.

    PubMed  Google Scholar 

  89. Sterling TR, Lyles CM, Vlahov D, et al. Sex differences in longitudinal human immunodeficiency virus type 1 RNA levels among seroconverters. J Infect Dis. 1999;180:666–72.

    PubMed  CAS  Google Scholar 

  90. Meier A, Chang JJ, Chan ES, et al. Sex differences in the Toll-like receptor-mediated response of plasmacytoid dendritic cells to HIV-1. Nat Med. 2009;15:955–9.

    PubMed  CAS  Google Scholar 

  91. Tavel JA, Huang CY, Shen J, et al. Interferon-alpha produces significant decreases in HIV load. J Interferon Cytokine Res. 2010;30:461–4.

    PubMed  CAS  Google Scholar 

  92. Munn DH, Mellor AL. Indoleamine 2, 3-dioxygenase and tumor-induced tolerance. J Clin Invest. 2007;117:1147–54.

    PubMed  CAS  Google Scholar 

  93. Manches O, et al. HIV-activated human plasmacytoid DCs induce Tregs through an indoleamine 2, 3-dioxygenase-dependent mechanism. J Clin Invest. 2007;118:3431–9.

    Google Scholar 

  94. Boasso A, Hardy AW, Anderson SA, Dolan MJ, Shearer GM. HIV-induced type I interferon and tryptophan catabolism drive T cell dysfunction despite phenotypic activation. PLoS One. 2008;3:e2961.

    PubMed  Google Scholar 

  95. Langenkamp A, Messi M, Lanzavecchia A, Sallusto F. Kinetics of dendritic cell activation: impact on priming of TH1, TH2 and nonpolarized T cells. Nat Immunol. 2000;1:311–6.

    PubMed  CAS  Google Scholar 

  96. Karp CL, Wysocka M, Ma X, et al. Potent suppression of IL-12 production from monocytes and dendritic cells during endotoxin tolerance. Eur J Immunol. 1998;28:3128–36.

    PubMed  CAS  Google Scholar 

  97. Ma X, Sun J, Papasavvas E, et al. Inhibition of IL-12 production in human monocyte-derived macrophages by TNF. J Immunol. 2000;164:1722–9.

    PubMed  CAS  Google Scholar 

  98. Lopez C, Fitzgerald PA, Siegal FP. Severe acquired immune deficiency syndrome in male homosexuals: diminished capacity to make interferon-alpha in vitro associated with severe opportunistic infections. J Infect Dis. 1983;148:962–6.

    PubMed  CAS  Google Scholar 

  99. Derdeyn CA, Silvestri G. Viral and host factors in the pathogenesis of HIV infection. Curr Opin Immunol. 2005;17:366–73.

    PubMed  CAS  Google Scholar 

  100. Moanna A, Dunham R, Paiardini M, Silvestri G. CD4 + T-cell depletion in HIV infection: killed by friendly fire? Curr HIV/AIDS Rep. 2005;2:16–23.

    PubMed  Google Scholar 

  101. Martinson JA, Roman-Gonzalez A, Tenorio AR, et al. Dendritic cells from HIV-1 infected individuals are less responsive to toll-like receptor (TLR) ligands. Cell Immunol. 2007;250:75–84.

    PubMed  CAS  Google Scholar 

  102. St John EP, Martinson J, Simoes JA, Landay AL, Spear GT. Dendritic cell activation and maturation induced by mucosal fluid from women with bacterial vaginosis. Clin Immunol. 2007;125:95–102.

    PubMed  CAS  Google Scholar 

  103. Benlahrech A, Gotch F, Kelleher P, Patterson S. Loss of NK stimulatory capacity by plasmacytoid and monocyte-derived DC but not myeloid DC in HIV-1 infected patients. PLoS One. 2011;6:e17525.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank current and former members of the Barratt-Boyes laboratory who contributed to work discussed in this review. Studies in the Barratt-Boyes laboratory cited in the review were supported by National Institutes of Health grants R01 AI071777 and the ARRA supplement to this grant R01 AI071777-03S1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon M. Barratt-Boyes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wonderlich, E.R., Kader, M., Wijewardana, V. et al. Dissecting the role of dendritic cells in simian immunodeficiency virus infection and AIDS. Immunol Res 50, 228–234 (2011). https://doi.org/10.1007/s12026-011-8220-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-011-8220-3

Keywords

Navigation