Skip to main content

Advertisement

Log in

Frequency and intensity of pulmonary bone marrow and fat embolism due to manual or automated chest compressions during cardiopulmonary resuscitation

  • Original Article
  • Published:
Forensic Science, Medicine and Pathology Aims and scope Submit manuscript

Abstract

Iatrogenic consequences of cardiopulmonary resuscitation (CPR) include sternal or rib fractures, pulmonary bone marrow embolisms (BME) and fat embolisms (FE). This report aimed to analyze the frequency and intensity of pulmonary BME and FE in fatal cases receiving final CPR efforts with the use of automated chest compression devices (ACCD) or manual chest compressions (mCC). The study cohort (all cardiac causes of death, no ante-mortem fractures) consisted of 15 cases for each group ‘ACCD’, ‘mCC’ and ‘no CPR’. Lung tissue samples were retrieved and stained with hematoxylin eosin (n = 4 each) and Sudan III (n = 2 each). Evaluation was conducted microscopically for any existence of BME or FE, the frequency of BME-positive vessels, vessel size for BME and the graduation according to Falzi for FE. The data were compared statistically using non-parametric analyses. All groups were matched except for CPR duration (ACCD > mCC) but this time interval was linked to the existence of pulmonary BME (p = 0.031). Both entities occur in less than 25% of all cases following unsuccessful CPR. BME was only detectable in CPR cases, but was similar between ACCD and mCC cases for BME frequency (p = 0.666), BME intensity (p = 0.857) and the size of BME-affected pulmonary vessels (p = 0.075). If any, only mild pulmonary FE (grade I) was diagnosed without differences in the CPR method (p = 0.624). There was a significant correlation between existence of BME and FE (p = 0.043). Given the frequency, intensity and size of pulmonary BME and FE following CPR, these conditions may unlikely be considered as causative for death in case of initial survival but can be found in lower frequencies in autopsy histology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Soar J, Nolan JP, Böttiger BW, Perkins GD, Lott C, Carli P, et al. European resuscitation council guidelines for resuscitation 2015: section 3. Adult advanced life support. Resuscitation. 2015;95:100–47.

    Article  Google Scholar 

  2. Hashimoto Y, Moriya F, Furumiya J. Forensic aspects of complications resulting from cardiopulmonary resuscitation. Legal Med. 2007;9:94–9.

    Article  Google Scholar 

  3. Buschmann C, Schulz T, Toskos M, Kleber C. Emergency medicine techniques and the forensic autopsy. Forensic Sci Med Pathol. 2013;9:48–67.

    Article  Google Scholar 

  4. Perkins GD, Jacobs IG, Nadkarni VM, Berg RA, Bhanji F, Biarent D, et al. Cardiac arrest and cardiopulmonary resuscitation outcome reports: update of the Utstein resuscitation registry templates for out-of-hospital cardiac arrest. Circulation. 2015;132:1286–300.

    Article  Google Scholar 

  5. Truhlar A, Deakin CD, Soar J, Khalifa GE, Alfonzo A, Bierens JJ, et al. European resuscitation council guidelines for resuscitation 2015: section 4. Cardiac arrest in special circumstances. Resuscitation. 2015;95:148–201.

    Article  Google Scholar 

  6. Marti J, Hulme C, Ferreira Z, Nikolova S, Lall R, Kaye C, et al. The cost-effectiveness of a mechanical compression device in out-of-hospital cardiac arrest. Resuscitation. 2017;117:1–7.

    Article  Google Scholar 

  7. Newberry R, Redman T, Ross E, Ely R, Saidler C, Arana A, et al. No benefit in neurologic outcomes of survivors of out-of-hospital cardiac arrest with mechanical compression device. Prehosp Emerg Care. 2018;22:338–44.

    Article  Google Scholar 

  8. Ondruschka B, Baier C, Hartwig T, Gräwert S, Böhm L, Dreßler J, et al. Leitlinienadhärenz bei frustran verlaufenden Reanimationen mit automatischen Reanimationsgeräten. Notarzt. 2018. https://doi.org/10.1005/a-0669-9207.

  9. Lardi C, Egger C, Larribau R, Niquille M, Mangin P, Fracasso T. Traumatic injuries after mechanical cardiopulmonary resuscitation (LUCAS™2): a forensic autopsy study. Int J Legal Med. 2015;129:1035–42.

    Article  Google Scholar 

  10. Smekal D, Johansson J, Huzevka T, Rubertsson S. No difference in autopsy detected injuries in cardiac arrest patients treated with manual chest compressions compared with mechanical compressions with the LUCAS device – a pilot study. Resuscitation. 2009;80:1104–7.

    Article  Google Scholar 

  11. Koster RW, Beenen LF, van der Boom EB, Spijkerboer AM, Tepaske R, van der Wal AC, et al. Safety of mechanical chest compression devices AutoPulse and LUCAS in cardiac arrest: a randomized clinical trial for non-inferiority. Eur Heart J. 2017;38:4006–13.

    Article  Google Scholar 

  12. Arai H. Pulmonary bone marrow embolism: a review of 350 necropsy cases. Pathol Int. 1979;29:911–31.

    Article  Google Scholar 

  13. Eriksson EA, Pellegrini DC, Vanderkolk WE, Minshall CT, Fakhry SM, Cohle SD. Incidence of pulmonary fat embolism at autopsy: an undiagnosed epidemic. J Trauma. 2011;71:312–5.

    Article  Google Scholar 

  14. Dettmer M, Willi N, Thiesler T, Ochsner P, Cathomas G. The impact of pulmonary bone component embolism: an autopsy study. J Clin Pathol. 2014;67:370–4.

    Article  Google Scholar 

  15. Carstens PH. Pulmonary bone marrow embolism following external cardiac massage. Acta Pathol Microbiol Scand. 1969;76:510–4.

    Article  CAS  Google Scholar 

  16. Jarmer J, Ampanozi G, Thali MJ, Bolliger SA. Role of survival time and injury severity in fatal pulmonary fat embolism. Am J Forensic Med Pathol. 2017;38:74–7.

    PubMed  Google Scholar 

  17. Baker PL, Pazell JA, Peltier LF. Free fatty acids, catecholamines, and arterial hypoxia in patients with fat embolism. J Trauma. 1971;11:1026–30.

    Article  CAS  Google Scholar 

  18. Schinella RA. Bone marrow emboli. Their fate in the vasculature of the human lung. Arch Pathol. 1973;95:386–91.

    CAS  PubMed  Google Scholar 

  19. Falzi G, Henn R, Spann W. Über pulmonale Fettembolie nach Traumen mit verschieden langer Überlebenszeit. Munch Med Wochenschr. 1964;21:978–81.

    Google Scholar 

  20. Janssen W. Forensic histology. Lübeck: Schmidt-Römhild; 1977. p. 111–50.

    Google Scholar 

  21. Krämer M, Penners BM. Postmortem tissue embolisms. Report of 3 cases. Arch Kriminol. 1989;183:29–36.

    PubMed  Google Scholar 

  22. Barzdo M, Berent J, Markuszewski L, Szram S. A coronary artery crossed embolism of bone-marrox origin: proof of connections between pulmonary arteries and veins. Forensic Sci Int. 2005;149:47–50.

    Article  CAS  Google Scholar 

  23. Yamamoto M. Pathology of experimental pulmonary bone marrow embolism. Initial lesions of the rabbit lung after intravenous infusion of allogeneic bone marrow with special reference to its pathogenesis. Acta Pathol Jpn. 1985;35:45–69.

    CAS  PubMed  Google Scholar 

  24. Brinkmann B, Borgner M, von Bülow M. Fat embolism of the lungs as the cause of death. Etiology, pathogenesis and reasoning. Z Rechtsmed. 1976;78:255–72.

    Article  CAS  Google Scholar 

  25. Voisard MX, Schweitzer W, Jackowski C. Pulmonary fat embolism - a prospective study within the forensic autopsy collective of the Republic of Iceland. J Forensic Sci. 2013;S1:S105–11.

    Article  Google Scholar 

  26. Baringer JR, Salzmann EW, Jones WA, Friedlich AL. External cardiac massage. N Engl J Med. 1961;265:62–5.

    Article  CAS  Google Scholar 

  27. Garvey JW, Zak FG. Pulmonary bone marrow emboli in patients receiving external cardiac massage. JAMA. 1964;187:59–60.

    Article  CAS  Google Scholar 

  28. Yanoff M. Incidence of bone-marrow embolism due to closed-chest cardiac massage. N Engl J Med. 1963;269:837–9.

    Article  CAS  Google Scholar 

  29. Jackson CT, Greendyke RM. Pulmonary and cerebral fat embolism after closed chest cardiac massage. Surg Gynecol Obstet. 1965;120:25.

    CAS  PubMed  Google Scholar 

  30. Schneider V, Kluge E. Pulmonary fat embolism after external cardiac massage. Beitr Gerichtl Med. 1971;28:76.

    Google Scholar 

  31. Flach PM, Ross SG, Bolliger SA, Ampanozi G, Hatch GM, Schön C, et al. Massive systemic fat embolism detected by postmortem imaging and biopsy. J Forensic Sci. 2012;57:1376–80.

    Article  Google Scholar 

  32. Sinicina I, Pankratz H, Schöpfer J. Unusual cases of pulmonary embolism. Rechtsmedizin. 2018;28:214–8.

    Article  Google Scholar 

  33. Dzieciol J, Kemona A, Gorska M, Barwijuk M, Sulkowski S, Kozielec Z, et al. Widespread myocardial and pulmonary bone marrow embolism following cardiac massage. Forensic Sci Int. 1992;56:195–9.

    Article  CAS  Google Scholar 

  34. Jorens PG, Van Marck EV, Snoeckx A, Parizel PM. Nonthrombotic pulmonary embolism. Eur Respir J. 2009;34:452–74.

    Article  CAS  Google Scholar 

  35. Jenny-Möbius U, Bruder E, Stallmach T. Recognition and significance of pulmonary bone embolism. Int J Legal Med. 1999;112:195–7.

    Article  Google Scholar 

  36. Blumenthal R, Saayman G. Bone marrow embolism to the lung in electrocution: two case reports. Am J Forensic Med Pathol. 2014;35:170–1.

    Article  Google Scholar 

  37. Rappaport H, Raum M, Horrell JB. Bone marrow embolism. Am J Pathol. 1951;27:407–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Eckardt P, Raez LE, Restrepo A, Temple JD. Pulmonary bone marrow embolism in sickle cell disease. South Med J. 1999;92:245–7.

    Article  CAS  Google Scholar 

  39. Hawley DA, McCarthy LJ. Sickle cell disease: two fatalities due to bone marrow emboli in patients with acute chest syndrome. Am J Forensic Med Pathol. 2009;30:69–71.

    Article  Google Scholar 

  40. Targueta EP, Hirano ACG, de Campos FPF, Martines JADS, Lovisolo SM, Felipe-Silva A. Bone marrow necrosis and fat embolism syndrome: a dreadful complication of hemoglobin sickle cell disease. Autops Case Rep. 2017;7:42–50.

    Article  Google Scholar 

  41. Kettner M, Ramsthaler F, Schmidt P, Padosch SA. Acute pulmonary embolism. Forensic assessment of accusations of diagnostic and treatment errors. Rechtsmedizin. 2013;23:255–62.

    Article  Google Scholar 

  42. Margiotta G, Coletti A, Severini S, Tommolini F, Lancia M. Medico-legal aspects of pulmonary thromboembolism. Adv Exp Med Biol. 2017;906:407–18.

    Article  CAS  Google Scholar 

  43. Zichner L. The importance of pulmonary embolism by bone fragments and bone marrow. Langenbecks Arch Chir. 1970;326:367–79.

    Article  CAS  Google Scholar 

  44. Pollak S, Reiter C, Stellwag-Carion C. 2-stage rupture of the liver as a complication of external heart massage. Z Rechtsmed. 1984;92:67–75.

    Article  CAS  Google Scholar 

  45. Lau G. Pulmonary cartilage embolism: fact or artefact? Am J Forensic Med Pathol. 1995;16:51–3.

    Article  CAS  Google Scholar 

  46. Orlowski JP, Julius CJ, Petras RE, Porembka DT, Gallagher JM. The safety of intraosseous infusions: risks of fat and bone marrow emboli to the lungs. Ann Emerg Med. 1989;18:1062–7.

    Article  CAS  Google Scholar 

  47. Fiallos M, Kissoon N, Abdelmoneim T, Johnson L, Murphy S, Lu L, et al. Fat embolism with the use of intraosseous infusion during cardiopulmonary resuscitation. Am J Med Sci. 1997;314:73–9.

    CAS  PubMed  Google Scholar 

  48. Maxeiner H. Congestion bleedings of the face and cardiopulmonary resuscitation – an attempt to evaluate their relationship. Forensic Sci Int. 2001;117:191–8.

    Article  CAS  Google Scholar 

  49. Maxeiner H, Jekat R. Resuscitation and conjunctival petechial hemorrhages. J Forensic Legal Med. 2010;17:87–91.

    Article  CAS  Google Scholar 

  50. Brunner P, Schellmann B. Is there a topography of posttraumatic fat embolism? Histological studies on lung whole-organ sections. Beitr Gerichtl Med. 1979;37:153–7.

  51. Havig O, Grüner OP. Pulmonary bone marrow embolism. A histological study of a non-selected autopsy material. Acta Pathol Microbiol Scand A. 1973;81:276–80.

    CAS  PubMed  Google Scholar 

  52. Meaney PA, Bobrow BJ, Mancini ME, Christenson J, de Caen AR, Bhanji F, et al. Cardiopulmonary resuscitation quality: improving cardiac resuscitation outcomes both inside and outside the hospital: a consensus statement from the American Heart Association. Circulation. 2013;128:417–35.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Miss Cornelia Pietschmann for her skillful help in the histology laboratory and Miss Aqeeda Singh for proofreading the paper as a native speaker.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Ondruschka.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest related to the given study.

Ethical approval

The study was approved by the ethics committee of the Medical Faculty of the University of Leipzig, Germany (code: 104/17-ek).

Informed consent

Informed consent was waived due to the retrospective nature of the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ondruschka, B., Baier, C., Bernhard, M. et al. Frequency and intensity of pulmonary bone marrow and fat embolism due to manual or automated chest compressions during cardiopulmonary resuscitation. Forensic Sci Med Pathol 15, 48–55 (2019). https://doi.org/10.1007/s12024-018-0044-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12024-018-0044-1

Keywords

Navigation