Skip to main content
Log in

Systematic Review and Meta-Analysis to Identify the Immunocytochemical Markers Effective in Delineating Benign from Malignant Thyroid Lesions in FNAC Samples

  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

Conventional cytology-based diagnosis for thyroid cancer is limited with more than 30–45% of nodules categorized as indeterminate, necessitating surgery for confirming or refuting the diagnosis. This systematic review and meta-analysis were aimed at identifying immunocytochemical markers effective in delineating benign from malignant thyroid lesions in fine needle aspiration cytology (FNAC) samples, thereby improving the accuracy of cytology diagnosis. A systematic review of relevant articles (2000–2021) from online databases was carried out and the search protocol registered in PROSPERO database (CRD42021229121). The quality of studies was assessed using QUADAS-2. Review Manager 5.4.1 from Cochrane collaboration and MetaDisc Version 1.4 was used to conduct the meta-analysis. Bias in the studies were visually analyzed using funnel plots, and statistical significance was evaluated by Egger’s test. Systematic review identified 64 original articles, while meta-analysis in eligible articles (n = 41) identified a panel of 5 markers, Galectin-3, HBME-1, CK-19, CD-56, and TPO. Assessment of the diagnostic performance revealed that Gal-3 (sensitivity: 0.81; CI: 0.79–0.83; specificity: 0.84; CI: 0.82–0.85) and HBME-1 (sensitivity: 0.83; Cl: 0.81–0.86; specificity: 0.85; CI: 0.83–0.86) showed high accuracy in delineating benign from malignant thyroid nodules. Efficacy analysis in indeterminate nodules showed Gal-3 and HBME-1 have high specificity of 0.86 (CI 0.84–0.89) and 0.82 (CI 0.78–0.86), respectively, and low sensitivity of 0.76 (CI 0.72–0.80) and 0.75 (CI 0.70–0.80), respectively. Diagnostic odds ratio (DOR) of Galectin-3 and HBME-1 were 39.18 (CI 23.38–65.65) and 24.44 (CI 11.16–53.54), respectively. Significant publication bias was observed for the markers Galectin-3 and CK-19 (p < 0.05). The panel of 5 markers identified from this meta-analysis are high-confidence candidates that need to be validated in thyroid cytology to establish their efficacy and enable clinical applicability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Goodarzi E, Moslem A, Feizhadad H, Jarrahi A, Adineh H, Sohrabivafa M, et al. Epidemiology, incidence and mortality of thyroid cancer and their relationship with the human development index in the world: An ecology study in 2018. Advances in Human Biology. 2019;9(2):162-7.

    Article  Google Scholar 

  2. Vaccarella S, Lortet-Tieulent J, Colombet M, Davies L, Stiller CA, Schüz J, et al. Global patterns and trends in incidence and mortality of thyroid cancer in children and adolescents: a population-based study. The lancet Diabetes & endocrinology. 2021;9(3):144-52.

    Article  Google Scholar 

  3. Ferlay J, Colombet M, Soerjomataram I, Mathers C, Parkin DM, Piñeros M, et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. International Journal of Cancer. 2019;144(8):1941-53.

    Article  CAS  PubMed  Google Scholar 

  4. Rossi ED, Pantanowitz L, Hornick JL. A worldwide journey of thyroid cancer incidence centred on tumour histology. The Lancet Diabetes & Endocrinology. 2021;9(4):193-4.

    Article  Google Scholar 

  5. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid. 2016;26(1):1-133.

    Article  PubMed  PubMed Central  Google Scholar 

  6. American Cancer Society. Thyroid cancer survival rates, by type and stage 2021 January 5 [Available from: https://www.cancer.org/cancer/thyroid-cancer/detection-diagnosis-staging/survival-rates.html.

  7. American Thyroid Association. Thyroid Cancer 2016 [updated 2016. Available from: https://www.thyroid.org/thyroid-cancer/.

  8. Zhao C-K, Xu H-X, Xu J-M, Sun C-Y, Chen W, Liu B-J, et al. Risk stratification of thyroid nodules with Bethesda category III results on fine-needle aspiration cytology: The additional value of acoustic radiation force impulse elastography. Oncotarget. 2017;8(1):1580-92.

    Article  PubMed  Google Scholar 

  9. Cibas ES, Ali SZ. The 2017 Bethesda System for Reporting Thyroid Cytopathology. Thyroid. 2017;27(11):1341-6.

    Article  PubMed  Google Scholar 

  10. Yaprak Bayrak B, Eruyar AT. Malignancy rates for Bethesda III and IV thyroid nodules: a retrospective study of the correlation between fine-needle aspiration cytology and histopathology. BMC Endocr Disord. 2020;20(1):48-.

  11. Khan TM, Zeiger MA. Thyroid Nodule Molecular Testing: Is It Ready for Prime Time? Front Endocrinol (Lausanne). 2020;11:590128-.

  12. Vishwanath D, Shanmugam A, Sundaresh M, Hariharan A, Saraf S, Bahadur U, et al. Development of a Low-cost NGS Test for the Evaluation of Thyroid Nodules. Indian Journal of Surgical Oncology. 2019.

  13. Armanious H, Adam B, Meunier D, Formenti K, Izevbaye I. Digital gene expression analysis might aid in the diagnosis of thyroid cancer. Curr Oncol. 2020;27(2):e93-e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cantara S, Marzocchi C, Pilli T, Cardinale S, Forleo R, Castagna MG, et al. Molecular Signature of Indeterminate Thyroid Lesions: Current Methods to Improve Fine Needle Aspiration Cytology (FNAC) Diagnosis. Int J Mol Sci. 2017;18(4):775.

    Article  PubMed Central  CAS  Google Scholar 

  15. Nair CG, Babu M, Biswas L, Jacob P, Menon R, Revathy AK, et al. Lack of Association of B-type Raf Kinase V600E Mutation with High-risk Tumor Features and Adverse Outcome in Conventional and Follicular Variants of Papillary Thyroid Carcinoma. Indian journal of endocrinology and metabolism. 2017;21(2):329-33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Santos MTD, Buzolin AL, Gama RR, Silva E, Dufloth RM, Figueiredo DLA, et al. Molecular Classification of Thyroid Nodules with Indeterminate Cytology: Development and Validation of a Highly Sensitive and Specific New miRNA-Based Classifier Test Using Fine-Needle Aspiration Smear Slides. Thyroid. 2018;28(12):1618-26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. González HE, Martínez JR, Vargas-Salas S, Solar A, Veliz L, Cruz F, et al. A 10-Gene Classifier for Indeterminate Thyroid Nodules: Development and Multicenter Accuracy Study. Thyroid. 2017;27(8):1058-67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Nikiforov YE, Ohori NP, Hodak SP, Carty SE, LeBeau SO, Ferris RL, et al. Impact of mutational testing on the diagnosis and management of patients with cytologically indeterminate thyroid nodules: a prospective analysis of 1056 FNA samples. The Journal of clinical endocrinology and metabolism. 2011;96(11):3390-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cochand-Priollet B, Dahan H, Laloi-Michelin M, Polivka M, Saada M, Herman P, et al. Immunocytochemistry with cytokeratin 19 and anti-human mesothelial cell antibody (HBME1) increases the diagnostic accuracy of thyroid fine-needle aspirations: preliminary report of 150 liquid-based fine-needle aspirations with histological control. Thyroid. 2011;21(10):1067-73.

    Article  CAS  PubMed  Google Scholar 

  20. Collet JF, Hurbain I, Prengel C, Utzmann O, Scetbon F, Bernaudin JF, et al. Galectin-3 immunodetection in follicular thyroid neoplasms: a prospective study on fine-needle aspiration samples. Br J Cancer. 2005;93(10):1175-81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Whiting PF, Rutjes AWS, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, et al. QUADAS-2: A Revised Tool for the Quality Assessment of Diagnostic Accuracy Studies. Annals of Internal Medicine. 2011;155(8):529-36.

    Article  PubMed  Google Scholar 

  22. Egger M, Smith GD, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315(7109):629-34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Duval S, Tweedie R. Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics. 2000;56(2):455-63.

    Article  CAS  PubMed  Google Scholar 

  24. Aiad HA, Kandil MA, Asaad NY, El-Kased AM, El-Goday SF. Galectin-3 immunostaining in cytological and histopathological diagnosis of thyroid lesions. J Egypt Natl Canc Inst. 2008;20(1):36-46.

    PubMed  Google Scholar 

  25. Aratake Y, Umeki K, Kiyoyama K, Hinoura Y, Sato S, Ohno A, et al. Diagnostic utility of galectin-3 and CD26/DPPIV as preoperative diagnostic markers for thyroid nodules. Diagnostic cytopathology. 2002;26(6):366-72.

    Article  PubMed  Google Scholar 

  26. Bartolazzi A, Gasbarri A, Papotti M, Bussolati G, Lucante T, Khan A, et al. Application of an immunodiagnostic method for improving preoperative diagnosis of nodular thyroid lesions. The Lancet. 2001;357(9269):1644-50.

    Article  CAS  Google Scholar 

  27. Bartolazzi A, Orlandi F, Saggiorato E, Volante M, Arecco F, Rossetto R, et al. Galectin-3-expression analysis in the surgical selection of follicular thyroid nodules with indeterminate fine-needle aspiration cytology: a prospective multicentre study. The Lancet Oncology. 2008;9(6):543-9.

    Article  CAS  PubMed  Google Scholar 

  28. Carpi A, Rossi G, Coscio GD, Iervasi G, Nicolini A, Carpi F, et al. Galectin-3 detection on large-needle aspiration biopsy improves preoperative selection of thyroid nodules: a prospective cohort study. Ann Med. 2010;42(1):70-8.

    Article  CAS  PubMed  Google Scholar 

  29. Ersoz S, Sert H, Yandi M, Erem C, Mungan S, Ersoz HO, et al. The significance of Galectin-3 expression in the immunocytochemical evaluation of thyroid fine needle aspiration cytology. Pathol Oncol Res. 2008;14(4):457-60.

    Article  PubMed  Google Scholar 

  30. Kim MJ, Kim HJ, Hong SJ, Shong YK, Gong G. Diagnostic utility of galectin-3 in aspirates of thyroid follicular lesions. Acta Cytol. 2006;50(1):28-34.

    Article  PubMed  Google Scholar 

  31. Muzafar A, Bukhari MH, Qureshi IU. A study of Galactin-3 on fine needle aspiration as a diagnostic marker differentiating benign from malignant thyroid neoplasm. Pak J Med Sci. 2017;33(3):726-31.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Papotti M, Volante M, Saggiorato E, Deandreis D, Veltri A, Orlandi F. Role of galectin-3 immunodetection in the cytological diagnosis of thyroid cystic papillary carcinoma. Eur J Endocrinol. 2002;147(4):515-21.

    Article  CAS  PubMed  Google Scholar 

  33. Paskas S, Jankovic J, Zivaljevic V, Tatic S, Bozic V, Nikolic A, et al. Malignant risk stratification of thyroid FNA specimens with indeterminate cytology based on molecular testing. Cancer Cytopathol. 2015;123(8):471-9.

    Article  CAS  PubMed  Google Scholar 

  34. Pennelli G, Mian C, Pelizzo MR, Naccamulli D, Piotto A, Girelli ME, et al. Galectin-3 cytotest in thyroid follicular neoplasia: a prospective, monoinstitutional study. Acta Cytol. 2009;53(5):533-9.

    Article  PubMed  Google Scholar 

  35. Raggio E, Camandona M, Solerio D, Martino P, Franchello A, Orlandi F, et al. The diagnostic accuracy of the immunocytochemical markers in the pre-operative evaluation of follicular thyroid lesions. J Endocrinol Invest. 2010;33(6):378-81.

    Article  CAS  PubMed  Google Scholar 

  36. Saggiorato E, Cappia S, De Giuli P, Mussa A, Pancani G, Caraci P, et al. Galectin-3 as a presurgical immunocytodiagnostic marker of minimally invasive follicular thyroid carcinoma. The Journal of clinical endocrinology and metabolism. 2001;86(11):5152-8.

    Article  CAS  PubMed  Google Scholar 

  37. Saggiorato E, Aversa S, Deandreis D, Arecco F, Mussa A, Puligheddu B, et al. Galectin-3: presurgical marker of thyroid follicular epithelial cell-derived carcinomas. J Endocrinol Invest. 2004;27(4):311-7.

    Article  CAS  PubMed  Google Scholar 

  38. Sapio MR, Guerra A, Posca D, Limone PP, Deandrea M, Motta M, et al. Combined analysis of galectin-3 and BRAFV600E improves the accuracy of fine-needle aspiration biopsy with cytological findings suspicious for papillary thyroid carcinoma. Endocrine-related cancer. 2007;14(4):1089-97.

    Article  CAS  PubMed  Google Scholar 

  39. Fadda G, Rossi ED, Raffaelli M, Pontecorvi A, Sioletic S, Morassi F, et al. Follicular thyroid neoplasms can be classified as low- and high-risk according to HBME-1 and Galectin-3 expression on liquid-based fine-needle cytology. Eur J Endocrinol. 2011;165(3):447-53.

    Article  CAS  PubMed  Google Scholar 

  40. Franco C, Martínez V, Allamand JP, Medina F, Glasinovic A, Osorio M, et al. Molecular markers in thyroid fine-needle aspiration biopsy: a prospective study. Appl Immunohistochem Mol Morphol. 2009;17(3):211-5.

    Article  CAS  PubMed  Google Scholar 

  41. Rossi ED, Straccia P, Martini M, Revelli L, Lombardi CP, Pontecorvi A, et al. The role of thyroid fine-needle aspiration cytology in the pediatric population: an institutional experience. Cancer Cytopathol. 2014;122(5):359-67.

    Article  CAS  PubMed  Google Scholar 

  42. Rossi ED, Bizzarro T, Martini M, Straccia P, Lombardi CP, Pontecorvi A, et al. The role of fine-needle aspiration in the thyroid nodules of elderly patients. Oncotarget. 2016;7(11):11850-9.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Rossi ED, Martini M, Capodimonti S, Cenci T, Bilotta M, Pierconti F, et al. Morphology combined with ancillary techniques: An algorithm approach for thyroid nodules. Cytopathology. 2018;29(5):418-27.

    Article  CAS  PubMed  Google Scholar 

  44. Torregrossa L, Faviana P, Filice ME, Materazzi G, Miccoli P, Vitti P, et al. CXC chemokine receptor 4 immunodetection in the follicular variant of papillary thyroid carcinoma: comparison to galectin-3 and hector Battifora mesothelial cell-1. Thyroid. 2010;20(5):495-504.

    Article  CAS  PubMed  Google Scholar 

  45. Abram M, Huhtamella R, Kalfert D, Hakso-Mäkinen H, Ludvíková M, Kholová I. The Role of Cell Blocks and Immunohistochemistry in Thyroid Atypia of Undetermined Significance/Follicular Lesion of Undetermined Significance Bethesda Category. Acta Cytol. 2021;65(3):257-63.

    Article  CAS  PubMed  Google Scholar 

  46. Margari N, Giovannopoulos I, Pouliakis A, Mastorakis E, Gouloumi AR, Panayiotides IG, et al. Application of Immunocytochemistry on Cell Block Sections for the Investigation of Thyroid Lesions. Acta Cytol. 2018;62(2):137-44.

    Article  CAS  PubMed  Google Scholar 

  47. Hashimoto K, Morimoto A, Kato M, Tominaga Y, Maeda N, Tsuzuki T, et al. Immunocytochemical analysis for differential diagnosis of thyroid lesions using liquid-based cytology. Nagoya J Med Sci. 2011;73(1-2):15-24.

    PubMed  Google Scholar 

  48. Saleh HA, Feng J, Tabassum F, Al-Zohaili O, Husain M, Giorgadze T. Differential expression of galectin-3, CK19, HBME1, and Ret oncoprotein in the diagnosis of thyroid neoplasms by fine needle aspiration biopsy. Cytojournal. 2009;6:18.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Bizzarro T, Martini M, Marrocco C, D'Amato D, Traini E, Lombardi CP, et al. The Role of CD56 in Thyroid Fine Needle Aspiration Cytology: A Pilot Study Performed on Liquid Based Cytology. PLoS One. 2015;10(7):e0132939.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Xiong Y, Li X, Liang L, Li D, Yan L, Li X, et al. Application of biomarkers in the diagnosis of uncertain samples of core needle biopsy of thyroid nodules. Virchows Arch. 2021;479(5):961-74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Saggiorato E, De Pompa R, Volante M, Cappia S, Arecco F, Dei Tos AP, et al. Characterization of thyroid 'follicular neoplasms' in fine-needle aspiration cytological specimens using a panel of immunohistochemical markers: a proposal for clinical application. Endocrine-related cancer. 2005;12(2):305-17.

    Article  CAS  PubMed  Google Scholar 

  52. Addati T, Achille G, Centrone M, Petroni S, Popescu O, Russo S, et al. TROP-2 expression in papillary thyroid cancer: a preliminary cyto-histological study. Cytopathology. 2015;26(5):303-11.

    Article  CAS  PubMed  Google Scholar 

  53. Ohta M, Ookoshi T, Naiki H, Imamura Y. HBME-1 and CD15 immunocytochemistry in the follicular variant of thyroid papillary carcinoma. Pathol Int. 2015;65(3):119-25.

    Article  CAS  PubMed  Google Scholar 

  54. Wang J, Xu L, Xu X, Wang X. Differences of HBME-1 Expression in Thyroid Follicular Adenoma and Follicular Thyroid Carcinoma by Ultrasound-Guided Fine-Needle Aspiration Biopsy. J Coll Physicians Surg Pak. 2019;29(4):337-40.

    Article  PubMed  Google Scholar 

  55. Lacoste-Collin L, d'Aure D, Berard E, Rouquette I, Delisle MB, Courtade-Saidi M. Improvement of the cytological diagnostic accuracy of follicular thyroid lesions by the use of the Ki-67 proliferative index in addition to cytokeratin-19 and HBME-1 immunomarkers: a study of 61 cases of liquid-based FNA cytology with histological controls. Cytopathology. 2014;25(3):160-9.

    Article  CAS  PubMed  Google Scholar 

  56. Ozolins A, Narbuts Z, Strumfa I, Volanska G, Stepanovs K, Gardovskis J. Immunohistochemical expression of HBME-1, E-cadherin, and CD56 in the differential diagnosis of thyroid nodules. Medicina (Kaunas). 2012;48(10):507-14.

    PubMed  Google Scholar 

  57. de Micco C, Savchenko V, Giorgi R, Sebag F, Henry JF. Utility of malignancy markers in fine-needle aspiration cytology of thyroid nodules: comparison of Hector Battifora mesothelial antigen-1, thyroid peroxidase and dipeptidyl aminopeptidase IV. Br J Cancer. 2008;98(4):818-23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Bonzanini M, Amadori PL, Sagramoso C, Dalla Palma P. Expression of cytokeratin 19 and protein p63 in fine needle aspiration biopsy of papillary thyroid carcinoma. Acta Cytol. 2008;52(5):541-8.

    Article  PubMed  Google Scholar 

  59. Khurana KK, Truong LD, LiVolsi VA, Baloch ZW. Cytokeratin 19 immunolocalization in cell block preparation of thyroid aspirates. An adjunct to fine-needle aspiration diagnosis of papillary thyroid carcinoma. Arch Pathol Lab Med. 2003;127(5):579–83.

  60. Nasser SM, Pitman MB, Pilch BZ, Faquin WC. Fine-needle aspiration biopsy of papillary thyroid carcinoma: diagnostic utility of cytokeratin 19 immunostaining. Cancer. 2000;90(5):307-11.

    Article  CAS  PubMed  Google Scholar 

  61. Solmaz OA. Diagnostic importance of CD56 with fine-needle aspiration cytology in suspected papillary thyroid carcinoma cases. Cytojournal. 2018;15:3.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Christensen L, Blichert-Toft M, Brandt M, Lange M, Sneppen SB, Ravnsbaek J, et al. Thyroperoxidase (TPO) immunostaining of the solitary cold thyroid nodule. Clin Endocrinol (Oxf). 2000;53(2):161-9.

    Article  CAS  PubMed  Google Scholar 

  63. Yousaf U, Christensen LH, Rasmussen AK, Jensen F, Mollerup CL, Kirkegaard J, et al. Immunohistochemical staining for thyroid peroxidase (TPO) of needle core biopsies in the diagnosis of scintigraphically cold thyroid nodules. Clin Endocrinol (Oxf). 2008;68(6):996-1001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Baloch ZW, Asa SL, Barletta JA, Ghossein RA, Juhlin CC, Jung CK, et al. Overview of the 2022 WHO Classification of Thyroid Neoplasms. Endocr Pathol. 2022;33(1):27-63.

    Article  PubMed  Google Scholar 

  65. Suurmond R, van Rhee H, Hak T. Introduction, comparison, and validation of Meta-Essentials: A free and simple tool for meta-analysis. Research Synthesis Methods. 2017;8(4):537-53.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Hambleton C, Kandil E. Appropriate and accurate diagnosis of thyroid nodules: a review of thyroid fine-needle aspiration. Int J Clin Exp Med. 2013;6(6):413-22.

    PubMed  PubMed Central  Google Scholar 

  67. Miranda-Filho A, Lortet-Tieulent J, Bray F, Cao B, Franceschi S, Vaccarella S, et al. Thyroid cancer incidence trends by histology in 25 countries: a population-based study. The lancet Diabetes & endocrinology. 2021;9(4):225-34.

    Article  Google Scholar 

  68. Barondes SH, Castronovo V, Cooper D, Cummings RD, Drickamer K, Feizi T, et al. Galectins: a family of animal beta-galactoside-binding lectins. Cell. 1994;76(4):597-8.

    Article  CAS  PubMed  Google Scholar 

  69. Chiu CG, Strugnell SS, Griffith OL, Jones SJM, Gown AM, Walker B, et al. Diagnostic utility of galectin-3 in thyroid cancer. Am J Pathol. 2010;176(5):2067-81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Liu F-T, Rabinovich GA. Galectins as modulators of tumour progression. Nature Reviews Cancer. 2005;5(1):29-41.

    Article  CAS  PubMed  Google Scholar 

  71. Sanabria A, Carvalho AL, Piana de Andrade V, Pablo Rodrigo J, Vartanian JG, Rinaldo A, et al. Is galectin-3 a good method for the detection of malignancy in patients with thyroid nodules and a cytologic diagnosis of “follicular neoplasm”? A critical appraisal of the evidence. Head & neck. 2007;29(11):1046–54.

  72. Trimboli P, Virili C, Romanelli F, Crescenzi A, Giovanella L. Galectin-3 Performance in Histologic a Cytologic Assessment of Thyroid Nodules: A Systematic Review and Meta-Analysis. Int J Mol Sci. 2017;18(8):1756.

    Article  PubMed Central  CAS  Google Scholar 

  73. de Matos LL, Del Giglio AB, Matsubayashi CO, de Lima Farah M, Del Giglio A, da Silva Pinhal MA. Expression of ck-19, galectin-3 and hbme-1 in the differentiation of thyroid lesions: systematic review and diagnostic meta-analysis. Diagnostic Pathology. 2012;7(1):97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Mase T, Funahashi H, Koshikawa T, Imai T, Nara Y, Tanaka Y, et al. HBME-1 immunostaining in thyroid tumors especially in follicular neoplasm. Endocrine journal. 2003;50(2):173-7.

    Article  PubMed  Google Scholar 

  75. Nga ME, Lim GS, Soh CH, Kumarasinghe MP. HBME-1 and CK19 are highly discriminatory in the cytological diagnosis of papillary thyroid carcinoma. Diagnostic cytopathology. 2008;36(8):550-6.

    Article  PubMed  Google Scholar 

  76. Cameron B-R, Berean KW. Cytokeratin subtypes in thyroid tumours: immunohistochemical study with emphasis on the follicular variant of papillary carcinoma. Journal of otolaryngology. 2003;32(5).

  77. Noroozinia F, Gheibi A, Ilkhanizadeh B, Abbasi A. Ck19 is a useful marker in distinguishing follicular variant of papillary thyroid carcinoma from benign thyroid lesions with follicular growth pattern. Acta Endocrinol (Buchar). 2016;12(4):387-91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kumar P, A, Sharma J, Kaur K, Bharadwaj M, Singh A. Evaluation of audible leak versus pressure volume loop closure for polyvinyl chloride cuff and polyurethane microcuff in endotracheal tube inflated with air: a prospective randomized study. International Journal of Orofacial Biology. 2018;2(1):6–11.

  79. Dunđerović D, Lipkovski JM, Boričic I, Soldatović I, Božic V, Cvejić D, et al. Defining the value of CD56, CK19, Galectin 3 and HBME-1 in diagnosis of follicular cell derived lesions of thyroid with systematic review of literature. Diagn Pathol. 2015;10:196.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Scarpino S, Di Napoli A, Melotti F, Talerico C, Cancrini A, Ruco L. Papillary carcinoma of the thyroid: low expression of NCAM (CD56) is associated with downregulation of VEGF-D production by tumour cells. The Journal of pathology. 2007;212(4):411-9.

    Article  CAS  PubMed  Google Scholar 

  81. El Demellawy D, Nasr AL, Babay S, Alowami S. Diagnostic utility of CD56 immunohistochemistry in papillary carcinoma of the thyroid. Pathology, research and practice. 2009;205(5):303-9.

    Article  PubMed  CAS  Google Scholar 

  82. Park WY, Jeong SM, Lee JH, Kang HJ, Sin DH, Choi KU, et al. Diagnostic value of decreased expression of CD56 protein in papillary carcinoma of the thyroid gland. Basic and Applied Pathology. 2009;2(2):63-8.

    Article  CAS  Google Scholar 

  83. De Micco C, Chrestian M-A, Gros N, Ruf J, Carayon P, Henry J-F. Immunohistochemical study of thyroid peroxidase in normal, hyperplastic, and neoplastic human thyroid tissues. Cancer. 1991;67(12):3036-41.

    Article  PubMed  Google Scholar 

  84. Sterne JAC, Sutton AJ, Ioannidis JPA, Terrin N, Jones DR, Lau J, et al. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ. 2011;343: d4002.

    Article  PubMed  Google Scholar 

  85. Sterne JAC, Harbord RM. Funnel Plots in Meta-analysis. The Stata Journal. 2004;4(2):127-41.

    Article  Google Scholar 

Download references

Acknowledgements

The authors duly acknowledge institutional support provided by Mazumdar Shaw Medical Foundation (MSMF).

Author information

Authors and Affiliations

Authors

Contributions

All the authors UM, SS, PM, AS, SK, and MK contributed to the development of study concept and design. UM and PM independently searched the database and collected the data. Data analysis was carried out by UM and SS.. The first draft of the manuscript was written by UM, reviewed, and commented by AS, SK, and MK. The final manuscript was read and approved by all authors.

Corresponding author

Correspondence to Amritha Suresh.

Ethics declarations

Ethics Approval

No ethical issues are raised by systematic reviews.

Consent to Participate

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

12022_2022_9721_MOESM1_ESM.tif

Supplementary file1: Funnel plot of markers in differentiating benign from malignant thyroid nodules in FNAC samples (a) Galectin-3, (b) HBME-1, (c) CK-19, (d) CD56, (e) TPO (TIF 609 KB)

12022_2022_9721_MOESM2_ESM.tif

Supplementary file2: Funnel plot of markers after sensitivity analysis in differentiating benign from malignant thyroid nodules in FNAC samples (a) Galectin-3, (b) HBME-1, (c) CK-19 (TIF 527 KB)

12022_2022_9721_MOESM3_ESM.tif

Supplementary file3: SROC curve of markers after sensitivity analysis in differentiating benign from malignant thyroid nodules in FNAC samples (a) Galectin-3, (b) HBME-1, (c) CK-19 (TIF 710 KB)

12022_2022_9721_MOESM4_ESM.tif

Supplementary file4: Pooled specificity of markers in differentiating benign from malignant thyroid nodules in FNAC samples (a) Galectin-3, (b) HBME-1, (c) CK-19, (d) CD56, (e) TPO (TIF 2201 KB)

12022_2022_9721_MOESM5_ESM.tif

Supplementary file5: Pooled sensitivity of markers in differentiating benign from malignant thyroid nodules in FNAC samples (a) Galectin-3, (b) HBME-1, (c) CK-19, (d) CD56, (e) TPO (TIF 2133 KB)

12022_2022_9721_MOESM6_ESM.tif

Supplementary file6: Descriptive Forest plot showing DOR after sensitivity analysis of markers (a) Galectin-3, (b) HBME-1, (c) CK-19 in differentiating benign from malignant thyroid nodules in FNAC samples (TIF 1461 KB)

12022_2022_9721_MOESM7_ESM.tif

Supplementary file7: SROC curve of (a) Galectin-3 and (b) HBME-1 in delineating indeterminate category of thyroid nodules in FNAC samples (TIF 638 KB)

12022_2022_9721_MOESM8_ESM.tif

Supplementary file8: Descriptive Forest plot showing DOR after sensitivity analysis of(a) Galectin-3 and (b) HBME-1 in delineating indeterminate category of thyroid nodules in FNAC samples (TIF 1241 KB)

12022_2022_9721_MOESM9_ESM.tif

Supplementary file9: SROC curve of (a) Galectin-3 and (b) HBME-1 after sensitivity analysis in delineating indeterminate category of thyroid nodules in FNAC samples (TIF 639 KB)

12022_2022_9721_MOESM10_ESM.tif

Supplementary file10: Pooled sensitivity of (a) Galectin-3 and (b) HBME-1 in delineating indeterminate category of thyroid nodules in FNAC samples (TIF 1030 KB)

12022_2022_9721_MOESM11_ESM.tif

Supplementary file11: Pooled specificity of (a) Galectin-3 and (b) HBME-1 in delineating indeterminate category of thyroid nodules in FNAC samples (TIF 1030 KB)

12022_2022_9721_MOESM12_ESM.tif

Supplementary file12: Funnel plot of (a) Galectin-3 and (b) HBME-1 in delineating indeterminate category of thyroid nodules in FNAC samples (TIF 476 KB)

12022_2022_9721_MOESM13_ESM.tif

Supplementary file13: Funnel plot after sensitivity analysis of (a) Galectin-3 and (b) HBME-1in delineating indeterminate category of thyroid nodules in FNAC samples (TIF 489 KB)

Supplementary file14 (PDF 194 KB)

Supplementary file15 (PDF 136 KB)

Supplementary file16 (PDF 146 KB)

Supplementary file17 (PDF 181 KB)

Supplementary file18 (PDF 139 KB)

Supplementary file19 (PDF 133 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohan, U., Sunny, S.P., Mendonca, P. et al. Systematic Review and Meta-Analysis to Identify the Immunocytochemical Markers Effective in Delineating Benign from Malignant Thyroid Lesions in FNAC Samples. Endocr Pathol 33, 243–256 (2022). https://doi.org/10.1007/s12022-022-09721-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12022-022-09721-5

Keywords

Navigation