Skip to main content

Advertisement

Log in

BRAF V600E Mutation in Papillary Thyroid Carcinoma: Significant Association with Node Metastases and Extra Thyroidal Invasion

  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

B-Raf (BRAF) is the strongest activator in the downstream of MAP kinase signaling. The somatic point mutation of BRAF gene (V600E) is the most common and specific event in papillary thyroid carcinoma (PTC). However, its prevalence is variable among different studies and its association with clinico-pathological features is controversial. This study tests the prevalence of BRAF V600E mutation in thyroid cancer patients in Indian subcontinental population. We analyzed 140 thyroid tumor specimens for BRAF gene mutation at codon 600 using mutant-allele-specific amplification, single-strand conformation polymorphism, Mutector assay, and DNA sequencing of the PCR-amplified exon 15. BRAF mutation at codon 600 was detected in 46 of 86 PTC patients (53.4%) from Indian subcontinental cohort. Frequency of mutation varied across the subtypes of PTCs. BRAF V600E mutation was more common in the conventional PTC (38 out of 62; 61%) than in the follicular variant of PTC (2 out of 17; 11.7%). None of the 8 follicular thyroid adenomas, 14 follicular thyroid carcinomas, 16 medullary thyroid carcinomas, and 16 benign hyperplasia patients showed any exon 15 mutation. We found significant correlation between BRAF mutation status and extra-thyroidal invasion, lymph node metastasis, and tumor stage. However no correlation was observed with gender, age, and tumor size of the patients. Thus our findings suggest that BRAF V600E is a prevalent genetic alteration in adult sporadic PTCs in Indian cohort and it may be responsible for the progression of classic variant of PTC to metastatic and poorly differentiated subtype and likely to have significant impact on its diagnostic and prognostic management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gimm O, Thyroid Cancer. Cancer Letter 163:143 – 156, 2001

    Article  CAS  Google Scholar 

  2. Hundahl SA, Fleming ID, Fremgen AM, Menck HR. A National Cancer Data Base report on 53,856 cases of thyroid carcinoma treated in the USA, 1985–1995. Cancer 83:2638–2648, 1998

    Article  PubMed  CAS  Google Scholar 

  3. Paterson IC, Greenlee R, Adams Jones D. Thyroid cancer in Wales, 1985–1996: a cancer registry-based study. Clin Oncol (R Coll Radiol) 11:245–251, 1999

    Article  CAS  Google Scholar 

  4. Nikiforov YE. RET/PTC rearrangement in thyroid tumors. Endocrine Pathology 13:3–16, 2002

    Article  PubMed  CAS  Google Scholar 

  5. Santoro M, Melillo RM, Carlomagno F, Fusco A & Vecchio G. Molecular mechanisms of RET activation in human cancer. Annals of the New York Academy of Sciences 963: 116–121, 2002

    Article  PubMed  CAS  Google Scholar 

  6. Giordano TJ, Kuick R, Thomas DG, Misek DE, Vinco M, Sanders D, Zhu Z, Ciampi R, Roh M, Shedden K et al. Molecular classification of papillary thyroid carcinoma: distinct BRAF, RAS, and RET/PTC mutation specific gene expression profiles discovered by DNA microarray analysis. Oncogene 24: 6646–6656, 2005

    Article  PubMed  CAS  Google Scholar 

  7. Xing M, BRAF Mutation in Thyroid Cancer. Endocr Rela Cancer 12:245–262, 2005

    Article  CAS  Google Scholar 

  8. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W et al. Mutations of the BRAF gene in human cancer. Nature (Lond) 417: 949–954, 2002

    Article  CAS  Google Scholar 

  9. Kim KH, Kang DW, Kim SH, Seong I O & Kang DY. Mutations of the BRAF gene in papillary thyroid carcinoma in a Korean population. Yonsei Medical Journal 45:818–821, 2004

    PubMed  CAS  Google Scholar 

  10. Namba H, Nakashima M, Hayashi T, Hayashida N, Maeda S, Rogounovitch TI, Ohtsuru A, Saenko VA, Kanematsu T & Yamashita S. Clinical Implication of hot spot BRAF mutation, V599E, in papillary thyroid cancers. J Clin Endo and Metab 88:4393–4397, 2003

    Article  CAS  Google Scholar 

  11. Xing M, Tufano RP, Tufaro AP, et al. Detection of BRAF mutation on fine needle aspiration biopsy specimens: a new diagnostic tool for papillary thyroid cancer. J Clin Endo and Metab 489:2867–2872, 2004

    Article  Google Scholar 

  12. Jin L, Sebo TJ, Nakamura N, Qian X, Oliveira A, Majerus JA, Johnson MR, Lloyd RV. BRAF mutation analysis in fine needle aspiration (FNA) cytology of the thyroid. Diagn Mol Pathol 15:136–143, 2006

    Article  PubMed  CAS  Google Scholar 

  13. Chung KW, Yang SK, Lee GK, Kim EY, Kwon S, Lee SH, Park do J, Lee HS, Cho BY, Lee ES, Kim SW. Detection of BRAFV600E mutation on fine needle aspiration specimens of thyroid nodule refines cyto-pathology diagnosis, especially in BRAF600E mutation-prevalent area. Clin Endocrinol (Oxf) 65:660–666, 2006

    Article  CAS  Google Scholar 

  14. Kebebew E, Weng J, Bauer J, Ranvier G, Clark OH, Duh QY, Shibru D, Bastian B, Griffin A. The prevalence and prognostic value of BRAF mutation in thyroid cancer. Ann Surg 246:466–471, 2007

    Article  PubMed  Google Scholar 

  15. Kim TY, Kim WB, Rhee YS, Song JY, Kim JM, Gong G, Lee S, Kim SY, Kim SC, Hong SJ, ShongYK. The BRAF mutation is useful for prediction of clinical recurrence in low-risk patients with conventional papillary thyroid carcinoma. Clin Endocrinol (Oxf) 65:364–368, 2006

    Article  CAS  Google Scholar 

  16. Xing M, Westra WH, Tufano RP, Cohen Y, Rosenbaum E, Rhoden KJ et al. BRAF mutation predicts a poorer clinical prognosis for papillary thyroid cancer. J Clin Endocrinol Metab 90:6373–6379, 2005

    Article  PubMed  CAS  Google Scholar 

  17. Lee JH, Lee ES & Kim YS. Clinicopathologic significance of BRAF V600E mutation in papillary carcinomas of the thyroid: a meta-analysis. Cancer 110:38–46, 2007

    Article  PubMed  Google Scholar 

  18. Xing M. BRAF mutation in papillary thyroid cancer: pathogenic role, molecular bases, and clinical implications. Endocrine Reviews 28 742–762, 2007

    Article  PubMed  CAS  Google Scholar 

  19. Frasca F, Nucera C, Pellegriti G et al. BRAF (V600E) mutation and the biology of papillary thyroid cancer. Endo Rel Can 15:191–205, 2008

    Article  CAS  Google Scholar 

  20. Yeole BB. Descriptive epidemiology of thyroid cancer in greater Bombay. Indian J Cancer 35(2):57–64, 1998

    PubMed  CAS  Google Scholar 

  21. Kimura ET, Nikiforova MN, Zhu Z et al. High Prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Can Res 63:1454–1457, 2003

    CAS  Google Scholar 

  22. Sapio MR, Posca D, Troncone G et al. Detection of BRAF mutation in thyroid papillary carcinomas by mutant allele-specific PCR amplification (MASA). Eur J of Endocrinol 154:341–348, 2006

    Article  CAS  Google Scholar 

  23. Saldanha G, Purnell D, Fletcher A et al. High BRAF mutation frequency does not characterize all melanocytic tumor types. Int J Cancer 111:705–710, 2004

    Article  PubMed  CAS  Google Scholar 

  24. Cohen NG, Cohen Y, Rosenbaum E, et al. T1799A BRAF Mutations in Conjunctival Melanocytic Lesions. Investigative Ophthalmology & Visual Science 46: 3027–3032, 2005

    Article  Google Scholar 

  25. Cheng S, Serra S, Mercado M, Ezzat S, Asa SL. A high-throughput proteomic approach provides distinct signatures for thyroid cancer behavior. Clin Cancer Res 17(8):2385–94, 2011

    Article  PubMed  CAS  Google Scholar 

  26. Mathur A, Moses W, Rahbari R, Khanafshar E, Duh QY, Clark O, Kebebew E. Higher rate of BRAF mutation in papillary thyroid cancer over time: A single-institution study. Cancer 117(19):4390–5, 2011

    Article  PubMed  CAS  Google Scholar 

  27. Garnett MJ, Marais R. Guilty as charged: B-RAF is a human oncogene. Cancer Cell 6:313–319, 2004

    Article  PubMed  CAS  Google Scholar 

  28. Kondo T, Ezzat S and Asa SL. Pathogenetic mechanisms in thyroid follicular-cell neoplasia, Nature Reviews 6:292–306, 2006

    Article  PubMed  CAS  Google Scholar 

  29. Vaillancourt RR, Gardner AM AND Johnson GL. B-Raf-Dependent Regulation of the MEK-1/Mitogen-Activated Protein Kinase Pathway in PC12 Cells and Regulation by Cyclic AMP. Mol and Cell Bio 14: 6522–6530, 1994

    CAS  Google Scholar 

  30. Fugazzola L, Puxeddu E, Avenia N et al. Correlation between B-RAF V600E mutation and clinico–pathologic parameters in papillary thyroid carcinoma: data from a multicentric Italian study and review of the literature. Endo Rel Can 13:455–464, 2006

    Article  CAS  Google Scholar 

  31. Frattini M, Ferrario C, Bressan P, Balestra D, De Cecco L, Mondellini P, Bongarzone I, Collini P, Gariboldi M, Pilotti S et al. Alternative mutations of BRAF, RET and NTRK1 are associated with similar but distinct gene expression patterns in papillary thyroid cancer. Oncogene 23:7436–7740, 2004

    Article  PubMed  CAS  Google Scholar 

  32. Nikiforova MN, Kimura ET, Gandhi M, et al. BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J Clin Endo & Metab 88 (11): 5399–5404, 2003

    Article  CAS  Google Scholar 

  33. Soares P, Trovisco V, Rocha AS, Feijao T, Rebocho AP et al. BRAF mutations typical of papillary thyroid carcinoma are more frequently detected in undifferentiated than in insular and insular-like poorly differentiated carcinomas. Virchows Archiv 444 572–576, 2004

    Article  PubMed  Google Scholar 

  34. Puxeddu E, Moretti S, Elisei R, et al. BRAFV599E mutation is the leading genetic event in adult sporadic papillary thyroid carcinomas. J Clin Endo & Metab 89(5):2414–2420, 2004

    Article  CAS  Google Scholar 

  35. Soares P, Trovisco V, Rocha AS, Lima J, Castro P et al. BRAF mutations and RET/PTC rearrangements are alternative events in the etiopathogenesis of PTC. Oncogene 22:4578–4580, 2003

    Article  PubMed  CAS  Google Scholar 

  36. Nikiforova MN, Ciampi R, Salvatore G, Santoro M, Gandhi M, et al. Low prevalence of BRAF mutations in radiation-induced thyroid tumors in contrast to sporadic papillary carcinomas. Cancer Letters 209:1–6, 2004

    Article  PubMed  CAS  Google Scholar 

  37. Michels JJ, Jacques M, Amar MH, Bardet S. Prevalence and prognostic significance of tall cell variant of papillary thyroid carcinoma. Human Pathology 38, 212– 219, 2007

    Article  PubMed  Google Scholar 

  38. Knauf JA, Ma X, Smith EP, Zhang L, Mitsutake N et al. Targeted expression of BRAFV600E in thyroid cells of transgenic mice results in papillary thyroid cancers that undergo dedifferentiation. Cancer Res 65(10):4238–4245, 2005

    Article  PubMed  CAS  Google Scholar 

  39. King A J, Patrick D R, Batorsky R S et al. Demonstration of a genetic therapeutic index for tumors expressing oncogenic BRAF by the kinase inhibitor SB-590885. Cancer Res 66(23):11100–11105, 2006

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to thank Dr. Giorgio Stassi (Universita Degli Studi Di Palermo, Palermo, Italy) for kindly providing the thyroid cancer cell lines and Dr. K. M. Mohandas (Dean Academics and HOD DDCN, Tata Memorial Hospital, India) for kind suggestions in stratification of tissue samples for analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Archana Narkar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakraborty, A., Narkar, A., Mukhopadhyaya, R. et al. BRAF V600E Mutation in Papillary Thyroid Carcinoma: Significant Association with Node Metastases and Extra Thyroidal Invasion. Endocr Pathol 23, 83–93 (2012). https://doi.org/10.1007/s12022-011-9184-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12022-011-9184-5

Keywords

Navigation