Skip to main content
Log in

Response to “Fallacies of Mice Experiments”

  • Commentary
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

In a recent Editorial, De Schutter commented on our recent study on the roles of a cortico-cerebellar loop in motor planning in mice (De Schutter 2019, Neuroinformatics, 17, 181–183, Gao et al. 2018, Nature, 563, 113–116). Two issues were raised. First, De Schutter questions the involvement of the fastigial nucleus in motor planning, rather than the dentate nucleus, given previous anatomical studies in non-human primates. Second, De Schutter suggests that our study design did not delineate different components of the behavior and the fastigial nucleus might play roles in sensory discrimination rather than motor planning. These comments are based on anatomical studies in other species and homology-based arguments and ignore key anatomical data and neurophysiological experiments from our study. Here we outline our interpretation of existing data and point out gaps in knowledge where future studies are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Notes

  1. Middleton, F. A., & Strick, P. L. (2001). Cerebellar projections to the prefrontal cortex of the primate. The Journal of Neuroscience : the Official Journal of the Society for Neuroscience, 21, 700–712.

  2. Thach, W. T., Goodkin, H. P., & Keating, J. G. (1992). The cerebellum and the adaptive coordination of movement. Annual Review of Neuroscience, 15, 403–442.

  3. Katz, P. S. (2016). Phylogenetic plasticity in the evolution of molluscan neural circuits. Current Opinion in Neurobiology, 41, 8–16. https://doi.org/10.1016/j.conb.2016.07.004.

  4. Finlay, B. L., & Darlington, R. B. (1995). Linked regularities in the development and evolution of mammalian brains. Science, 268, 1578–1584.

  5. Barton, R. A., & Harvey, P. H. (2000). Mosaic evolution of brain structure in mammals. Nature, 405, 1055–1058. https://doi.org/10.1038/35016580.

  6. Guo, Z. V., et al. (2014). Flow of cortical activity underlying a tactile decision in mice. Neuron, 81, 179–194.

  7. Chen, T. W., Li, N., Daie, K., & Svoboda, K. (2017). A map of anticipatory activity in mouse motor cortex. Neuron, 94, 866–879 e864. https://doi.org/10.1016/j.neuron.2017.05.005.

  8. Inagaki, H. K., Inagaki, M., Romani, S., & Svoboda, K. (2018). Low-dimensional and monotonic preparatory activity in mouse anterior lateral motor cortex. The Journal of Neuroscience : the Official Journal of the Society for Neuroscience, 38, 4163–4185. https://doi.org/10.1523/JNEUROSCI.3152-17.2018.

  9. Li, N., Chen, T. W., Guo, Z. V., Gerfen, C. R., & Svoboda, K. (2015). A motor cortex circuit for motor planning and movement. Nature, 519, 51–56.

  10. Economo, M. N., et al. (2018). Distinct descending motor cortex pathways and their roles in movement. Nature, 563, 79–84. https://doi.org/10.1038/s41586-018-0642-9.

  11. Suzuki, L., Coulon, P., Sabel-Goedknegt, E. H., & Ruigrok, T. J. (2012). Organization of cerebral projections to identified cerebellar zones in the posterior cerebellum of the rat. The Journal of Neuroscience : the Official Journal of the Society for Neuroscience, 32, 10854–10869. https://doi.org/10.1523/JNEUROSCI.0857-12.2012.

  12. Mihailoff, G. A., Lee, H., Watt, C. B., & Yates, R. (1985). Projections to the basilar pontine nuclei from face sensory and motor regions of the cerebral cortex in the rat. The Journal of Comparative Neurology, 237, 251–263. https://doi.org/10.1002/cne.902370209.

  13. Coffman, K. A., Dum, R. P., & Strick, P. L. (2011). Cerebellar vermis is a target of projections from the motor areas in the cerebral cortex. Proceedings of the National Academy of Sciences of the United States of America, 108, 16068–16073. https://doi.org/10.1073/pnas.1107904108.

  14. Asanuma, C., Thach, W. R., & Jones, E. G. (1983). Anatomical evidence for segregated focal groupings of efferent cells and their terminal ramifications in the cerebellothalamic pathway of the monkey. Brain Research, 286, 267–297.

  15. Hintzen, A., Pelzer, E. A., & Tittgemeyer, M. (2018). Thalamic interactions of cerebellum and basal ganglia. Brain Structure & Function, 223, 569–587. https://doi.org/10.1007/s00429-017-1584-y.

  16. Sakai, S. T., & Patton, K. (1993). Distribution of cerebellothalamic and nigrothalamic projections in the dog: A double anterograde tracing study. The Journal of Comparative Neurology, 330, 183–194. https://doi.org/10.1002/cne.903300204.

  17. Tanji, J., & Evarts, E. V. (1976). Anticipatory activity of motor cortex neurons in relation to direction of an intended movement. Journal of Neurophysiology, 39, 1062–1068.

  18. Riehle, A., & Requin, J. (1989). Monkey primary motor and premotor cortex: Single-cell activity related to prior information about direction and extent of an intended movement. Journal of Neurophysiology, 61, 534–549.

  19. Seidemann, E., Zohary, E., & Newsome, W. T. (1998). Temporal gating of neural signals during performance of a visual discrimination task. Nature, 394, 72–75. https://doi.org/10.1038/27906.

  20. Bisley, J. W., Zaksas, D., & Pasternak, T. (2001). Microstimulation of cortical area MT affects performance on a visual working memory task. Journal of neurophysiology, 85, 187–196.

  21. Afshar, A., et al. (2011). Single-trial neural correlates of arm movement preparation. Neuron, 71, 555–564. https://doi.org/10.1016/j.neuron.2011.05.047.

  22. de Lafuente, V., & Romo, R. (2005). Neuronal correlates of subjective sensory experience. Nature Neuroscience, 8, 1698–1703.

  23. Svoboda, K. & Li, N. (2017) Neural mechanisms of movement planning: Motor cortex and beyond. Current opinion in neurobiology In press.

  24. Robinson, F. R., Straube, A., & Fuchs, A. F. (1993). Role of the caudal fastigial nucleus in saccade generation. II. Effects of muscimol inactivation. Journal of Neurophysiology, 70, 1741–1758.

  25. Robinson, F. R., & Fuchs, A. F. (2001). The role of the cerebellum in voluntary eye movements. Annual Review of Neuroscience, 24, 981–1004. https://doi.org/10.1146/annurev.neuro.24.1.981.

  26. Lu, L., Cao, Y., Tokita, K., Heck, D. H. & Boughter, J. D., Jr. (2013). Medial cerebellar nuclear projections and activity patterns link cerebellar output to orofacial and respiratory behavior. Frontiers in Neural Circuits 7, 56.https://doi.org/10.3389/fncir.2013.00056.

  27. Bosman, L. W., et al. (2010). Encoding of whisker input by cerebellar Purkinje cells. The Journal of Physiology, 588, 3757–3783. https://doi.org/10.1113/jphysiol.2010.195180.

  28. Loewenstein, Y., et al. (2005). Bistability of cerebellar Purkinje cells modulated by sensory stimulation. Nature Neuroscience, 8, 202–211. https://doi.org/10.1038/nn1393.

  29. Chen, S., Augustine, G. J., & Chadderton, P. (2016). The cerebellum linearly encodes whisker position during voluntary movement. eLife, 5, e10509. https://doi.org/10.7554/eLife.10509.

  30. Proville, R. D., et al. (2014). Cerebellum involvement in cortical sensorimotor circuits for the control of voluntary movements. Nature Neuroscience, 17, 1233–1239. https://doi.org/10.1038/nn.3773.

  31. Deverett, B., Koay, S. A., Oostland, M., & Wang, S. S. (2018). Cerebellar involvement in an evidence-accumulation decision-making task. eLife, 7. https://doi.org/10.7554/eLife.36781.

  32. Chabrol, F. P., Blot, A., & Mrsic-Flogel, T. D. (2019). Cerebellar contribution to preparatory activity in motor neocortex. Neuron, 103, 1–14. https://doi.org/10.1016/j.neuron.2019.05.022.

  33. Strick, P. L., Dum, R. P., & Fiez, J. A. (2009). Cerebellum and nonmotor function. Annual Review of Neuroscience, 32, 413–434. https://doi.org/10.1146/annurev.neuro.31.060407.125606.

  34. Schmahmann, J. D., & Sherman, J. C. (1998). The cerebellar cognitive affective syndrome. Brain : a Journal of Neurology, 121(Pt 4), 561–579.

  35. Schmahmann, J. D., Guell, X., Stoodley, C. J., & Halko, M. A. (2019). The theory and neuroscience of cerebellar cognition. Annual Review of Neuroscience. https://doi.org/10.1146/annurev-neuro-070918-050258.

  36. Ito, M. (2008). Control of mental activities by internal models in the cerebellum. Nature Reviews. Neuroscience, 9, 304–313. https://doi.org/10.1038/nrn2332.

  37. Ohmae, S., Uematsu, A., & Tanaka, M. (2013). Temporally specific sensory signals for the detection of stimulus omission in the primate deep cerebellar nuclei. J Neurosci, 33, 15432–15441. https://doi.org/10.1523/JNEUROSCI.1698-13.2013.

  38. Heffley, W., et al. (2018). Coordinated cerebellar climbing fiber activity signals learned sensorimotor predictions. Nature Neuroscience, 21, 1431–1441. https://doi.org/10.1038/s41593-018-0228-8.

  39. Wagner, M. J., Kim, T. H., Savall, J., Schnitzer, M. J., & Luo, L. (2017). Cerebellar granule cells encode the expectation of reward. Nature, 544, 96–100. https://doi.org/10.1038/nature21726.

  40. Wagner, M. J., et al. (2019). Shared cortex-cerebellum dynamics in the execution and learning of a motor task. Cell, 177, 669–682 e624. https://doi.org/10.1016/j.cell.2019.02.019.

  41. Deverett, B., Kislin, M., Tank, D., & Wang, S. S. (2019). Cerebellar disruption impairs working memory during evidence accumulation. BioRxiv. https://doi.org/10.1101/521849.

  42. Tsai, P. T., et al. (2012). Autistic-like behaviour and cerebellar dysfunction in Purkinje cell Tsc1 mutant mice. Nature, 488, 647–651. https://doi.org/10.1038/nature11310.

  43. Kalmbach, B. E., Ohyama, T., Kreider, J. C., Riusech, F., & Mauk, M. D. (2009). Interactions between prefrontal cortex and cerebellum revealed by trace eyelid conditioning. Learning & Memory, 16, 86–95. https://doi.org/10.1101/lm.1178309.

  44. Kostadinov, D., Beau, M., Pozo, M. B., & Hausser, M. (2019). Predictive and reactive reward signals conveyed by climbing fiber inputs to cerebellar Purkinje cells. Nature Neuroscience. https://doi.org/10.1038/s41593-019-0381-8.

  45. Carta, I., Chen, C. H., Schott, A. L., Dorizan, S., & Khodakhah, K. (2019). Cerebellar modulation of the reward circuitry and social behavior. Science, 363. https://doi.org/10.1126/science.aav0581.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuo Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Z., Thomas, A.M., Economo, M.N. et al. Response to “Fallacies of Mice Experiments”. Neuroinform 17, 475–478 (2019). https://doi.org/10.1007/s12021-019-09433-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-019-09433-y

Navigation